Loss(损失)
与绝大多数的机器学习引擎一样,Caffe是由一个loss function(损失函数)驱动的。loss function也称为 error function,cost function或者objective function。loss function利用模型中的参数(比如模型中网络的weights-权重参数)运算得出一个(标量)结果,这个结果表明参数设置的badness,通过最小化loss function得出的badness,来优化算法,达到学习的目标。
Caffe中的loss是由Net的Forward pass计算得出的。每一个Layer根据输入的Blobs计算得到输出的Blobs。某些Layer的输出会被用于loss function计算badness。对于one-versus-all classification task(多分类问题),一个经典的loss function是SoftmaxWithLoss function(广义线性回归分析损失函数)。如下定义:
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "pred"
bottom: "label"
top: "loss"
}
- 在SoftmaxWithLoss function中,输出是一个标量,计算的是预测值(pred)与实际值(label)之间的平均误差(loss)。
Loss weights(损失权重)
对于有多个Layer组成的Net而言(例如一个由SoftmaxWithLoss layer和EuclideanLoss layer组成的Net),loss weights(权重)用来表征不同Layer产生的loss的重要性。
Caffe里面的约定,Layer名称中以Loss结尾表示这是一个会产生loss的Layer,除此之外,其他的Layer只是单纯的用于中间计算。然而,任何一个Layer都可以被用于产生loss,如果为Layer产生的每一个output Blob添加一个属性:
loss_weight: <float>
的话。每一个Loss Layer都有一个隐含的loss weight,对于第一个top/output,loss weight是1,对于其他的top/output,loss weight是0;其他类型Layer隐含的loss weight都是0。所以上述的SoftmaxWithLoss layer也可以写成:
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "pred"
bottom: "label"
top: "loss"
loss_weight: 1
}
然而,反向迭代时,一个Layer可以赋予一个非零的loss weight,用于调整中间Layer产生的一些数据、参数。对于不止一个输出(top)的Layer(对应的有非零的loss weight),输出的loss是summing over all entries of the blob(对所有输出-blob的loss的和)。
Caffe最后输出的loss,是由Net中所有的loss加权得到的,如下所示(伪代码):
loss := 0
for layer in layers:
for top, loss_weight in layer.tops, layer.loss_weights:
loss += loss_weight * sum(top)