POJ 3666 Making the Grade [DP]

题意:

给定一个序列,以最小代价将其变成单调不增或单调不减序列,这里的代价看题目公式。

思路:

很容易想到是DP。

1.

对前i个序列,构成的最优解其实就是与两个参数有关。一个是这个序列处理后的最大值mx,和这个序列处理的代价值cost。

显然最大值mx最小最好(这样第i+1个值可以不花代价直接接在其后面的可能性更大),cost最小也最好(题意要求),但是两者往往是鱼和熊掌。

用dp[i][j]表示:前i个数构成的序列,这个序列最大值为j,dp[i][j]的值代表相应的cost。

所以状态转移方程如下:

dp[i][j]=abs(j-w[i])+min(dp[i-1][k]);(k<=j)

这个表格是根据转移方程写出来的dp数组。

再仔细看一下转移方程:dp[i][j]=abs(j-w[i])+min(dp[i-1][k]);(k<=j)

右边没填充的是因为填充的数字肯定比前面的数字大,无用,因为在求min( dp[i-1][k] )时,是求最小值,既然更大,则最小值时无需考虑。

又从表格中可以看出:

dp[i][j]=abs(j-w[i])+min(dp[i-1][k]);(k<=j)这里的k无需从1遍历到j。

只要在对j进行for循环的时候不断更新一个dp[i-1][j]的最小值mn=min(mn,dp[i-1][j]),

然后对dp[i][j]=abs(j-w[i])+mn即可;

这样改进之后即可从本来的时候时间复杂度O(NMM)改进为O(NM);


但是,这里的m是A[i]的最大值,显然TLE。

所以必须用离散化思想改进,因为N=2000。远小于A[i]的最大值。

离散化:将序列排序一下,然后用位置的前后关系来制定其值,这样时间复杂度变成O(N^2).


最后是这题数据有bug,只需要求不减序列即可。


#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
long long n;
long long a[2222];
long long b[2222];
long long dp[2222][2222];
long long Abs(long long a,long long b)
{
	return a>b?a-b:b-a;
}
void solve()
{
	long long minn=(1<<30);
	for(long long i=1;i<=n;i++)
	{
		minn=dp[i-1][1];
		for(long long j=1;j<=n;j++)
		{
			minn=min(minn,dp[i-1][j]);
			dp[i][j]=minn+Abs(a[i],b[j]);
		}
	}
	long long ans=0x7fffffffffffffffL;
	for(int i=1;i<=n;i++)
	{
		ans=min(ans,dp[n][i]);
	}
	printf("%lld\n",ans);
}
int main()
{
    //freopen("/home/rainto96/in.txt","r",stdin);
	scanf("%lld",&n);
	for(long long i=1;i<=n;i++)
	{
		scanf("%lld",a+i);
		b[i]=a[i];
	}
	sort(b+1,b+1+n);
	solve();
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值