1.安装
安装步骤
- 克隆源码:从 GitHub 克隆 X-AnyLabeling 的源码。
- 安装依赖:在项目目录下运行以下命令安装所需的环境依赖: pip install -r requirements.txt
- 启动应用:运行以下命令启动应用: python anylabeling/app.py 也可以下载 exe 文件直接启动2。
2.ai自动标图
2.1 选择自己选练好的模型标注自己的数据集
生成onnx文件
from ultralytics import YOLO
# 加载一个模型,路径为 YOLO 模型的 .pt 文件
model = YOLO("/media/galieo/DATA/github/ultralytics-main/tests/runs/segment/train8/weights/best.pt")
# 导出模型,格式为 ONNX
model.export(format="onnx")
2.2 配置文件说明
x-anylabeling读取的是yaml文件,所以直接配置yaml文件
type: yolov8_seg
name: yolov8n-seg-r20230620
display_name: YOLOv8n-Seg Ultralytics
model_path: /media/galieo/DATA/picture/predict/best.onnx
score_threshold: 0.2
nms_threshold: 0.2
classes:
- tea
其中type和name名称的确定方法参考
X-AnyLabeling/docs/en/model_zoo.md at main · CVHub520/X-AnyLabeling · GitHub
1. 模型类型与名称
-
type: yolov8_seg
指定模型类型为 YOLOv8 分割模型(Segmentation)。 -
name: yolov8n-seg-r20230620
模型名称,标识为 YOLOv8n-Seg 的一个版本,发布于 2023 年 6 月 20 日。 -
display_name: YOLOv8n-Seg Ultralytics
模型显示名称,用于界面或日志中展示。
2.2 选择自己的网络和数据