利用X-anylabeling对自己的数据训练的模型自动标注图片

1.安装

安装步骤

  1. 克隆源码:从 GitHub 克隆 X-AnyLabeling 的源码。
  2. 安装依赖:在项目目录下运行以下命令安装所需的环境依赖: pip install -r requirements.txt 
  3. 启动应用:运行以下命令启动应用: python anylabeling/app.py 也可以下载 exe 文件直接启动2

2.ai自动标图

2.1 选择自己选练好的模型标注自己的数据集

生成onnx文件

from ultralytics import YOLO

# 加载一个模型,路径为 YOLO 模型的 .pt 文件
model = YOLO("/media/galieo/DATA/github/ultralytics-main/tests/runs/segment/train8/weights/best.pt")

# 导出模型,格式为 ONNX
model.export(format="onnx")

2.2 配置文件说明

x-anylabeling读取的是yaml文件,所以直接配置yaml文件

type: yolov8_seg
name: yolov8n-seg-r20230620
display_name: YOLOv8n-Seg Ultralytics
model_path: /media/galieo/DATA/picture/predict/best.onnx
score_threshold: 0.2
nms_threshold: 0.2
classes:
  - tea

其中type和name名称的确定方法参考

X-AnyLabeling/docs/en/model_zoo.md at main · CVHub520/X-AnyLabeling · GitHub

1. 模型类型与名称

  • type: yolov8_seg
    指定模型类型为 YOLOv8 分割模型(Segmentation)。

  • name: yolov8n-seg-r20230620
    模型名称,标识为 YOLOv8n-Seg 的一个版本,发布于 2023 年 6 月 20 日。

  • display_name: YOLOv8n-Seg Ultralytics
    模型显示名称,用于界面或日志中展示。

2.2 选择自己的网络和数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值