[YOLOv8] 缺陷检测之AnyLabeling使用预训练的模型来做自动化标注

创作背景

当我们使用AnyLabeling标注的数据,通过转换成YOLOv8数据集进行预训练之后,会生成一个模型文件(*.pt),后续我们还会添加更多的图像进去做训练,手动标注图像,是一个苦力活,还好AnyLabeling中提供了使用预训练好的YOLOv5,YOLOv8的模型来帮忙进行自动标注,这样可以大大提升标注的效率。

[YOLOv8] - 使用AnyLabeling对数据集进行标注(含安装和使用技巧)

[YOLOv8] 缺陷检测之AnyLabeling标注格式转换成YOLO格式

[YOLOv8] 缺陷检测之如何划分训练集,验证集和测试集

如何使用自训练的模型来进行自动化标注?

Custom Models for Auto Labeling – AnyLabeling (nrl.ai)

转换YOLOv8生成的模型(权重)文件转换成ONNX

在当前运行AnyLabeling的python的环境中安装ultralytics和onnx:

pip install ultralytics
pip install onnx

转换YOLOv8模型成ONNX格式:

导出 - Ultralytics YOLOv8 文档

通过命令行

yolo export model=D:/my_project/wepy/src/wepy/aitool/train/runs/detect/train14/weights/best.pt format=onnx  # 导出自定义训练的模型

 ​​​​​居然报错了:

试试通过python代码:

from ultralytics import YOLO

# 加载自定义训练的模型
model = YOLO('D:/my_project/wepy/src/wepy/aitool/train/runs/detect/train14/weights/best.pt')

# 导出模型
model.export(format='onnx')

 在YOLOv8模型文件所在的目录会生成best.onnx:

创建AnyLabeling模型配置文件

yolov8n_custom.yaml,如下

type: yolov8
name: yolov8n-custom
display_name: YOLOv8n Custom
model_path: D:/my_project/wepy/src/wepy/aitool/train/runs/detect/train14/weights/best.onnx
confidence_threshold: 0.45
input_height: 640
input_width: 640
nms_threshold: 0.45
score_threshold: 0.5
classes:
- normal

从AnyLabeling UI选择你创建的自定义模型

 对新的图像进行自动化标注

选中一个未做标注的图像,点击“运行(i)”按钮,未标注的图像被自动标注了出来:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值