[Python] Numpy的reshape函数介绍和各种使用案例

reshape函数介绍

Numpy的reshape函数用于改变数组的形状。它可以将一个数组重新排列成指定的维度,而不改变其数据。

函数原型:

numpy.reshape(arr, newshape, order='C')

参数说明:

  • arr:需要重塑的数组。
  • newshape:整数或整数元组,表示新的形状。新形状的元素总数必须与原数组相同。
  • order:可选参数,表示数组数据的读取顺序。默认值为'C',表示按行优先顺序读取。如果设置为'F',则按列优先顺序读取。

使用案例

将一维数组转换为二维数组

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
new_arr = np.reshape(arr, (2, 3))
print(new_arr)

输出结果:

[[1 2 3]
 [4 5 6]]

将二维数组转换为一维数组

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
new_arr = np.reshape(arr, (6,))
print(new_arr)

输出结果:

[1 2 3 4 5 6]

将一维数组转换为三维数组

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
new_arr = np.reshape(arr, (2, 3, 1))
print(new_arr)

输出结果:

[[[1]
  [2]
  [3]]

 [[4]
  [5]
  [6]]]

reshape函数中的-1维度使用

Numpy的reshape函数中的-1表示该维度的大小由数组的总大小和其他维度的大小自动推断得出。 
假设有一个一维数组a,其长度为6,我们想要将其转换为一个2行3列的二维数组b,可以使用以下代码:

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6])
b = a.reshape(2, 3)
print(b)

输出结果:

[[1 2 3]
 [4 5 6]]

如果我们不指定每个维度的大小,而是只使用-1,则可以得到一个与原数组等价的二维数组:

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6])
b = a.reshape(-1, 3)
print(b)

输出结果:

[[1 2 3]
 [4 5 6]]

在这个例子中,-1表示第二个维度的大小由数组的总大小和其他维度的大小自动推断得出,即总大小除以3得到2,因此第二个维度的大小为2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值