[Python] scikit-learn - accuracy_score(准确率分数)函数介绍和使用场景(案例)

Scikit-learn是一个用于机器学习和数据挖掘的Python库,提供了大量的机器学习算法和工具,使得机器学习任务更加便捷和高效。其中一个非常常用的函数是accuracy_score,用于计算分类器的准确率。本文将介绍accuracy_score函数的具体功能、函数原型和使用场景,并提供一个使用案例来说明其用法和作用。

函数介绍

accuracy_score函数是scikit-learn库中用于计算分类器准确率的函数。准确率是分类器在所有分类样本中正确分类的比例。accuracy_score函数接受两个参数,分别是真实标签和预测标签,返回一个准确率的浮点数值。

函数原型

sklearn.metrics.accuracy_score — scikit-learn 1.4.0 documentation

accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
  • y_true:真实的标签,通常是一个一维数组或列表
  • y_pred:预测的标签,通常是一个一维数组或列表
  • normalize:是否将结果归一化,默认为True,即返回一个准确率的百分比;若设置为False,即返回一个正确分类的样本数量
  • sample_weight:样本权重,可选参数,默认为None

使用场景

accuracy_score函数广泛应用于分类问题中,用于计算分类器的准确率。准确率是分类问题中最常用的评价指标之一,可以帮助我们评估和比较不同分类器的性能。通过比较不同分类器的准确率,我们可以选择最优的分类器来应用于实际场景中。

使用案例

为了更好地理解accuracy_score函数的使用方法和作用,下面给出一个使用案例,展示如何计算分类器的准确率。

from sklearn.metrics import accuracy_score

# 真实标签
y_true = [0, 1, 2, 1, 3, 2, 0, 1, 2, 3]
# 预测标签
y_pred = [0, 1, 1, 1, 3, 2, 0, 0, 2, 3]

# 计算准确率
normal_accuracy = accuracy_score(y_true, y_pred, normalize=True)

non_normal_accuracy = accuracy_score(y_true, y_pred, normalize=False)

print("归一化准确率:", normal_accuracy, "非归一化准确率:", non_normal_accuracy)

输出结果为:

归一化准确率: 0.8 非归一化准确率: 8.0

以上案例中,我们定义了真实的标签y_true和预测的标签y_pred。通过调用accuracy_score函数,传入这两个标签,即可计算出分类器的准确率。在这个例子中,准确率为0.8,意味着分类器正确分类的样本占总样本数量的80%(或者8.0,意味着分类正确的有8个样本,总样本为10个)。

总结

本文介绍了scikit-learn库中accuracy_score函数的具体功能、函数原型和使用场景,并提供了一个使用案例来说明其用法和作用。accuracy_score函数是在机器学习中广泛使用的函数,常用于计算分类器的准确率,帮助我们评估和比较不同分类器的性能。在实际应用中,我们可以根据准确率选择最优的分类器来解决具体的问题。

 

Scikit-learn库提供了多种贝叶斯分类器的实现,包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯。这里以高斯朴素贝叶斯分类器为例,介绍如何使用Scikit-learn库实现贝叶斯分类。 1. 数据准备 首先,我们需要准备一些分类数据。这里使用Scikit-learn库自带的鸢尾花数据集。代码如下: ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 2. 数据预处理 在使用贝叶斯分类器之前,需要对数据进行预处理。这里我们使用Scikit-learn库的数据预处理工具preprocessing中的StandardScaler类进行标准化处理。代码如下: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) ``` 3. 构建模型 接下来,我们可以使用Scikit-learn库的GaussianNB类构建高斯朴素贝叶斯分类器。代码如下: ```python from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() ``` 4. 模型训练 模型构建完成后,我们需要使用训练数据对模型进行训练。代码如下: ```python gnb.fit(X, y) ``` 5. 模型预测 训练完成后,我们可以使用模型对新的数据进行分类预测。代码如下: ```python y_pred = gnb.predict(X) ``` 6. 模型评估 最后,我们可以使用Scikit-learn库的metrics中的accuracy_score函数计算模型的准确率。代码如下: ```python from sklearn.metrics import accuracy_score accuracy = accuracy_score(y, y_pred) print('Accuracy:', accuracy) ``` 完整代码如下: ```python from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score # 数据准备 iris = load_iris() X = iris.data y = iris.target # 数据预处理 scaler = StandardScaler() X = scaler.fit_transform(X) # 构建模型 gnb = GaussianNB() # 模型训练 gnb.fit(X, y) # 模型预测 y_pred = gnb.predict(X) # 模型评估 accuracy = accuracy_score(y, y_pred) print('Accuracy:', accuracy) ``` 注意,这里为了简化代码,使用训练数据进行了模型评估。在实际应用中,应该使用测试数据进行模型评估,以避免过拟合问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值