ACM-欧拉函数

欧拉函数被定义为小于或等于n的数中与n互质的个数。它的一般计算式是:phi(n) = n*(1-1/p1)*(1-1/p2)*...*(1-1/pk),其中p1...pk为n的所有质因子。

关于欧拉函数有如下几点性质:

1、phi(1) = 1

2、若n是质数,那么phi(n) = n-1

3、若n是质数x的k次幂,phi(n) = (x-1)*x^(k-1)

4、若m,n互质,那么phi(m*n) = phi(m)*phi(n)

5、若n是奇数,那么phi(2*n) = phi(n)

6、若x,y是质数,且n = x*y,那么phi(n) = (x-1)*(y-1)

6、小于n且与n互质的数的和为:n/2 * phi(n)

下面的代码求出了整数n的欧拉函数值:

#include <cmath>
int GetPhi(int n)
{
    int m = sqrt(n+0.5);
    int ans = n;
    for(int i=2; i<=m; ++i) if(n%i == 0)
    {
        ans = ans/i * (i-1);
        while(n%i == 0) n /= i;
    }
    if(n > 1) ans = ans/n * (n-1);
    return ans;
}

下面的代码求出了1~n中所有数的欧拉函数值,并保存在了phi数组中:

const int MAXN = 3e6+5;
__int64 phi[MAXN];

void PhiTable(int n)
{
    for(int i=2; i<=n; ++i)
        phi[i] = 0;
    phi[1] = 1;
    for(int i=2; i<=n; ++i) if((!phi[i]))
        for(int j=i; j<=n; j+=i)
        {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j]/i * (i-1);
        }
}

下面的代码求出了1~n中所有数的欧拉函数值的前缀和,并保存在了f数组中:

const int MAXN = 3e6+5;
__int64 f[MAXN];
void SumPhiTable(int n)
{
    f[1] = 1;
    for(int i=2; i<n; ++i)
    {
        if(!f[i])
        {
            for(int j=i; j<n; j+=i)
            {
                if(!f[j]) f[j] = j;
                f[j] = f[j]/i * (i-1);
            }
        }
        f[i] += f[i-1];
    }
}

下面具体来看一道例题,HDOJ:2824,传送门( 点击打开链接),题目如下:

The Euler function

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3867    Accepted Submission(s): 1602


Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 

Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 

Output
Output the result of (a)+ (a+1)+....+ (b)
 

Sample Input
  
  
3 100
 

Sample Output
  
  
3042
 

题意:

求a~b中所有数的欧拉函数值的和

分析:

可以先将所有数的欧拉函数值计算出来并保存,最后直接将要求范围内的数的欧拉函数值加起来即可。

源代码:

#include <cstdio>
#include <cstring>

const int MAXN = 3e6+5;
__int64 phi[MAXN];

void PhiTable(int n)
{
    for(int i=2; i<=n; ++i)
        phi[i] = 0;
    phi[1] = 1;
    for(int i=2; i<=n; ++i) if((!phi[i]))
        for(int j=i; j<=n; j+=i)
        {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j]/i * (i-1);
        }
}

int main()
{
    int a, b;
    PhiTable(3e6);
    while(~scanf("%d%d", &a, &b))
    {
        __int64 ans = 0;
        for(int i=a; i<=b; ++i)  // 累加答案
           ans += phi[i];
        printf("%I64d\n", ans);
    }
    return 0;
}

其他相关的题目还有,HDOJ:1286,2588,3501。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值