协方差的理解与计算

本文介绍了协方差的概念,定义为E[(X-E(X))(Y-E(Y))],并提供了计算示例。通过给出的X和Y的值,分别计算出它们的期望和乘积的期望,最终得出X与Y的协方差为1.25,表明了两者之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、定义 E[(X-E(X))(Y-E(Y))]  称为随机变量X和Y的协方差,  记作COV(X,Y), 即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。

     通过推到 E[(X-E(X))(Y-E(Y))]    =     E(XY)-E(X)E(Y) 

实例计算:

     有两个变量分别是X和Y,其值分别如下,

           Xi :   2    3    4    5

           Yi :   6    7    8    9    

      计算期望:

           E(X) = ( 2 + 3 + 4  + 5 ) / 4 =  3.5

           E(Y) = ( 6 + 7 + 8 +  9 ) / 4 =  7.5

           E(XY)=(  2*6  +3*7   +4*8  +5*9 ) / 4  =  27.5

      计算协方差:

           Cov(X,Y)   =   E(XY)   -    E(X)E(Y)    =   27.5  -  26.25    =   1.25

      因此,X与Y的协方差值为:1.25

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值