Open3D点云算法与深度学习的应用
文章平均质量分 79
《长期更新》《实战案例》以Open3D-Python算法进行开发,讲解常用算法原理及使用方式,同时在点云深度学习中使用Open3D编写后处理部分,记录环境部署记踩坑记录。对三维点云数据进行缺陷检测,部分案例会结合Halcon及OpenCV算法库进行处理。
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MelaCandy
浮生暂寄梦中梦,世事如闻风里风
展开
-
Open3D点云算法与点云深度学习案例汇总(长期更新)
Open3D-python算法专栏文章汇总,长期更新算法原理与实战案例。原创 2024-07-10 09:41:58 · 2278 阅读 · 0 评论 -
【PointNet++】Win11成功安装记录及填坑方法
PointNet++在win11下复现成功及问题解决原创 2024-06-12 19:00:00 · 1347 阅读 · 0 评论 -
【PointNet++】制作点云数据集使用CloudCompare进行标注
使用PointNet++复现成功后,需要训练自己的数据集。于是使用cloudcompare参照ShapeNet的数据集格式去制作,最终保存的txt文件格式为“xyz+rgb+label”,一共7列。自己按此制作好的数据集已成功训练及推测,于是记录下来让好兄弟好姐妹们少踩坑多吃肉。原创 2024-06-12 19:00:00 · 2327 阅读 · 3 评论 -
Windows下快速安装Open3D-0.18.0(python版本)详细教程
Open3D 是一个强大的开源库,专门用于处理和可视化3D数据,如点云、网格和RGB-D图像。它提供了丰富的功能和工具,广泛应用于计算机视觉、机器人、计算机图形学、地理信息系统(GIS)等领域。以下是Open3D的主要用途及其在不同应用领域中的详细介绍。原创 2024-07-02 20:00:00 · 4068 阅读 · 0 评论 -
Open3D 计算投影的点云的尺寸
在 Open3D 中,计算投影后的点云尺寸可以通过将点云投影到某个平面,然后计算该投影点云的边界框(Bounding Box)来实现。这个过程的主要步骤包括选择投影平面、将点云投影到该平面、计算投影点云的边界框,并最终计算边界框的尺寸。原创 2024-09-03 00:00:00 · 475 阅读 · 0 评论 -
Open3D 基于曲率大小的特征点提取
基于曲率大小的特征点提取是一种常见的点云处理方法,用于识别和提取点云中具有显著几何特征的关键点。通过计算点云中每个点的曲率,并选择曲率较大的点作为特征点,可以在点云中保留那些具有明显形状变化的区域,如边缘、角点等。这种方法在三维重建、物体识别和特征匹配等领域有广泛的应用。原创 2024-09-04 00:00:00 · 1102 阅读 · 0 评论 -
Open3D 体素随机下采样
体素随机下采样是一种常用的点云简化方法,通过将点云划分为立方体体素网格,并从每个体素中随机选择一个点进行保留。这种方法在显著减少点云数据量的同时,能够有效保留点云的整体结构和几何特征。它广泛应用于点云数据的预处理、噪声过滤和数据压缩等场景。原创 2024-09-05 00:00:00 · 422 阅读 · 0 评论 -
Open3D mesh 模型精细化处理--中点剖分
中点剖分(Midpoint Subdivision)是一种经典的网格细分技术,通过在网格的每条边的中点处插入新的顶点,并重新连接这些顶点来生成新的面,从而将每个原始三角面细分为更小的三角面。该方法在增加网格细节的同时,保持了模型的几何形状,常用于需要更高分辨率模型的场景,如3D建模、动画制作、仿真和渲染。原创 2024-09-03 00:00:00 · 2253 阅读 · 0 评论 -
Open3D 计算点云基本特征
在 Open3D 中,可以通过 PCA(主成分分析)来求得点云的特征值和特征向量。然后基于这些特征值,进一步计算各种几何特征,如线性、平面性、球度等。原创 2024-08-21 00:00:00 · 1089 阅读 · 0 评论 -
Open3D 基于法向量夹角的特征点提取
基于法向量夹角的特征点提取是一种在点云处理中用于识别表面变化显著区域的技术。通过计算点云中每个点的法向量与其邻域点法向量之间的夹角,可以判断点云表面的局部变化程度,并提取那些法向量变化较大的点作为特征点。这种方法特别适用于提取边缘、角点等关键几何特征。原创 2024-09-09 09:22:05 · 1123 阅读 · 0 评论 -
Open3D 基于法线的双边滤波
基于法线的双边滤波是一种用于点云平滑的技术,它结合了点与其邻域点之间的几何距离和法线方向的相似性,从而在去除噪声的同时保留几何特征。这种滤波方法广泛应用于点云处理领域,尤其是在需要保留表面细节和边缘的场景中。原创 2024-09-09 09:27:47 · 1994 阅读 · 0 评论 -
Open3D 点云导向滤波
点云导向滤波是一种用于增强点云几何结构特征并抑制噪声的技术。与传统的点云滤波方法相比,导向滤波通过考虑点云的几何结构信息来优化滤波效果,能够更好地保留边缘等关键特征。导向滤波常用于点云的预处理、降噪和结构增强等应用场景。原创 2024-09-05 00:00:00 · 647 阅读 · 0 评论 -
Open3D 四元数、欧拉角及旋转向量转旋转矩阵的方式
在三维计算机视觉和图形学中,旋转可以用多种方式表示,包括四元数、欧拉角、旋转向量等。这些表示方式各有优缺点,并且在不同的应用场景中具有不同的优势。在 Open3D 中,可以方便地将这些表示方式转换为旋转矩阵,从而统一处理三维旋转操作。原创 2024-09-09 09:33:30 · 972 阅读 · 0 评论 -
Open3D 点云添加均匀分布的随机噪声
在 Open3D 中,可以通过向点云的每个点添加随机噪声来模拟实际的测量误差或环境噪声。均匀分布的随机噪声是一种常见的噪声类型,它可以用于测试算法的鲁棒性。原创 2024-09-03 00:00:00 · 368 阅读 · 0 评论 -
Open3D 曲率下采样
曲率下采样是一种基于几何特征的点云处理技术,通过计算每个点的曲率来判断其所在位置的局部表面特征,从而进行选择性保留。曲率的计算通常基于点的法向量和其邻域点的分布。原创 2024-09-04 00:00:00 · 372 阅读 · 0 评论 -
Open3D mesh 均值滤波
均值滤波的基本思想是将网格中每个顶点的位置替换为其相邻顶点位置的平均值。通过多次迭代这个过程,网格的高频噪声会被削弱,整体表面变得更加光滑。与拉普拉斯滤波不同,均值滤波不强调顶点之间的差异,而是直接取邻域的平均值。原创 2024-09-02 00:00:00 · 993 阅读 · 0 评论 -
Open3D mesh 获取网格属性
在 Open3D 中,网格模型(TriangleMesh)包含了多个属性,这些属性可以帮助我们理解和处理三维网格数据。获取和操作这些属性是进行网格分析和处理的基础。Open3D 提供了多种方法来访问和修改网格的各种属性。原创 2024-08-30 00:00:00 · 504 阅读 · 0 评论 -
Open3D mesh 均匀下采样
在 Open3D 中,均匀下采样(Uniform Mesh Downsampling)是一种常用的网格简化方法,通过减少网格模型中的顶点和面数来生成一个简化的网格模型。这种方法在减少计算复杂度和内存占用的同时,尽量保持模型的几何特性。原创 2024-08-28 00:00:00 · 739 阅读 · 0 评论 -
Open3D mesh 网格简化(顶点聚类)
在三维图形处理和计算机图形学中,网格简化是一项重要的任务。它的目标是在减少网格顶点数量的同时尽量保留网格的几何特性。顶点聚类(Vertex Clustering)是一种常用的网格简化方法,它通过将空间划分为体素(小立方体)并将落入同一体素的顶点聚合为一个顶点来减少网格的复杂度。原创 2024-08-31 00:00:00 · 1289 阅读 · 0 评论 -
Open3D mesh 去除噪点
在三维网格模型中,噪点通常是指一些孤立的、偏离主模型的无效数据点或面片,这些噪点可能是由于扫描过程中的误差或其他原因造成的。在 Open3D 中,可以使用多种方法来去除三维网格中的噪点,从而获得更加干净和光滑的网格模型。原创 2024-08-29 00:00:00 · 621 阅读 · 0 评论 -
Open3D mesh APAR网格变形
ARAP(As-Rigid-As-Possible,尽可能刚性)变形是一种基于能量最小化的网格形变方法。该算法的核心思想是在变形过程中保持网格局部区域的刚性(即局部几何形状尽可能不变),同时允许用户控制的顶点移动到新位置。ARAP 通过优化顶点的位置,使变形后的网格形状既符合用户指定的顶点约束,又尽量保持与原始形状的一致性。原创 2024-08-26 00:00:00 · 2410 阅读 · 0 评论 -
Open3D mesh 计算点云模型的表面积及体积
在 Open3D 中,计算三维网格模型的表面积和体积是一个常见的任务,尤其在几何分析、形状优化、工程测量等领域。Open3D 提供了一些方便的工具,可以帮助我们计算三角网格模型的这些几何属性。原创 2024-08-25 10:16:33 · 770 阅读 · 0 评论 -
Open3D 计算点云的面状指数
面状指数通过对点云中每个点的邻域点集合进行特征值分解来评估该点邻域的平面性。具体来说,面状指数基于邻域点的协方差矩阵的特征值来计算。特征值的大小反映了点云在不同方向上的扩展程度:原创 2024-08-20 00:00:00 · 2487 阅读 · 0 评论 -
Open3D mesh 泊松下采样
泊松下采样(Poisson Sampling)是一种基于泊松磁性原理的点云或网格模型采样方法。它通过生成均匀分布的采样点,可以在保持模型细节的同时减少数据量,从而加速后续的处理和分析。这种方法特别适用于三维扫描数据的精简和模型简化。原创 2024-08-27 00:00:00 · 838 阅读 · 0 评论 -
Open3D mesh Taubin滤波
在三维网格处理中,Taubin 滤波是一种常用的平滑技术,它通过对网格顶点位置进行反复平滑和拉伸操作,以消除高频噪声和细节,但不会像简单的拉普拉斯平滑那样导致体积收缩。因此,Taubin 滤波可以在保持网格整体形状的前提下,消除噪声并平滑网格。原创 2024-09-01 00:00:00 · 780 阅读 · 0 评论 -
Open3D mesh 拉普拉斯laplacian滤波
拉普拉斯滤波(Laplacian Smoothing)是一种常用的网格平滑技术,通过对网格顶点的位置进行迭代调整,以减少高频噪声,使网格表面更加光滑。拉普拉斯滤波的基本原理是通过邻域顶点的位置来调整当前顶点的位置,从而达到平滑的效果。原创 2024-09-02 00:00:00 · 370 阅读 · 0 评论 -
Open3D mesh 模型切片
在三维数据处理和分析中,切片操作是非常常见的需求。通过切片,我们可以深入观察模型的内部结构,分析特定截面上的几何特性。本文将介绍如何使用 Open3D 的Tensor API 对三维网格模型进行切片,并可视化切片的结果。原创 2024-08-22 00:00:00 · 424 阅读 · 0 评论 -
Open3D mesh 隐藏点移除
隐藏点移除(Hidden Point Removal, HPR)是三维数据处理中常用的技术,主要用于从三维点云或网格中移除那些在特定视角下被遮挡的部分。这种技术可以用于消除视点不可见的部分,从而提高渲染和分析的效率。原创 2024-08-23 00:00:00 · 753 阅读 · 0 评论 -
Open3D mesh 模型锐化
模型锐化的原理主要涉及增强几何对象(如点云或网格模型)表面上的高频细节。这类似于图像处理中的锐化操作,通过突出物体表面的边缘和细节,使得模型的视觉效果更加清晰和锐利。原创 2024-08-22 00:00:00 · 956 阅读 · 0 评论 -
Open3D mesh 裁剪
在三维图形处理中,裁剪是指从一个更大的网格中提取出感兴趣的部分。Open3D 提供了多种方法来对三角网格进行裁剪,例如使用轴对齐包围盒(AABB),有向包围盒(OBB),或者基于平面来裁剪网格。这些方法可以帮助你只保留模型中感兴趣的区域,从而简化计算或用于特定的分析任务。原创 2024-08-24 00:00:00 · 346 阅读 · 0 评论 -
Open3D 遍历八叉树
八叉树的构建基于递归地将三维空间划分为更小的子空间。每个内部节点对应一个立方体空间,该空间被分割成八个子立方体,分别对应八个子节点。叶子节点包含点云数据。当查询或遍历八叉树时,我们可以从根节点开始递归访问每个节点,并根据节点的层次结构执行特定操作。原创 2024-08-19 00:00:00 · 873 阅读 · 0 评论 -
Open3D 格网法计算点云的占地面积
格网法计算点云的占地面积的基本思路是将点云投影到二维平面(通常是 XY 平面),然后将该平面划分为一系列的小网格(格网)。通过统计每个网格中是否存在点云数据,我们可以计算出覆盖点云的网格的总面积,从而估算出点云的占地面积。原创 2024-08-18 09:17:39 · 1074 阅读 · 0 评论 -
Open3D 点云切片
点云切片的基本原理是通过定义一个平面或一系列平行平面,将点云数据在该平面上进行截取,得到指定范围内的点云子集。通常通过判断点云中每个点在指定轴上的坐标值是否在给定范围内来实现切片操作。点云切片在点云分析、数据处理、特征提取、可视化和检测测量等方面具有广泛的应用。原创 2024-08-02 00:00:00 · 1247 阅读 · 0 评论 -
Open3D 非线性最小二乘法拟合空间球
非线性最小二乘法是拟合复杂曲线和曲面(如球)的常用方法。拟合三维空间中的球面可以通过非线性最小二乘法来实现,使用如 Levenberg-Marquardt 算法进行优化。原创 2024-07-20 00:00:00 · 524 阅读 · 0 评论 -
Open3D 使用Jet颜色映射渲染点云
在点云处理和可视化中,颜色渲染可以帮助更直观地展示点云的属性。Jet 颜色映射是一种广泛应用于科学计算和可视化中的颜色映射方法,它通过将数值数据映射到一种特定的颜色梯度来展示数据的不同特征,通常用于将数值信息直观地表示为颜色。原创 2024-08-10 00:00:00 · 562 阅读 · 0 评论 -
Open3D 合并多个点云
合并点云在点云处理中起着重要作用,可以帮助解决单次扫描的局限性,增加数据的覆盖范围和密度,提高数据的鲁棒性和准确性,实现多视角拼接和多传感器融合等应用。通过合并点云,能够获得更全面、更准确、更细致的三维数据模型,满足各种应用需求。原创 2024-08-06 00:00:00 · 691 阅读 · 0 评论 -
Open3D 计算点云质心
在Open3D中,计算点云的质心(中心点)是一个常见的操作。质心是点云所有点的平均位置,可以通过简单地计算点云中所有点的平均值来得到。点云质心的计算是点云处理中一个基本且重要的步骤。质心不仅是点云的几何中心,还在许多实际应用中起着重要作用,包括点云对齐、归一化、重心调整、特征提取、可视化和机器人导航等。通过计算质心,可以更有效地处理和分析点云数据,提升点云处理任务的精度和效率。原创 2024-07-29 19:00:00 · 783 阅读 · 0 评论 -
Open3D 计算点云的归一化协方差矩阵
计算点云的归一化协方差矩阵(normalized covariance matrix)可以帮助理解点云数据的分布和方向性,常用于主成分分析(PCA)、点云对齐和特征提取等任务。归一化协方差矩阵是点云数据中心化后的点云各坐标之间的协方差关系的标准化表示。原创 2024-08-04 00:00:00 · 1118 阅读 · 0 评论 -
Open3D 三维重建-Poisson Surface Reconstruction (泊松曲面重建)
泊松曲面重建是一种用于从点云数据生成光滑曲面的算法。该方法基于泊松方程,通过最小化法向量场的散度,生成具有光滑特性的三维表面。具体来说,泊松曲面重建将点云的法向量信息视为泊松方程中的源项,通过解泊松方程,得到一个光滑的隐函数。然后,通过提取隐函数的等值面,生成三维网格。原创 2024-08-09 00:00:00 · 1683 阅读 · 0 评论 -
Open3D 计算点云法向量的夹角
计算点云法向量的夹角在许多3D数据处理和分析任务中具有重要作用。通过分析法向量夹角,可以获取点云的几何特性、曲面特征、边界信息等,广泛应用于平面检测、曲面分析、边界检测、点云配准、噪声过滤、形状识别、纹理分析等领域。原创 2024-08-03 15:37:07 · 1153 阅读 · 0 评论