1.对焦模糊
均值滤波
高斯滤波
2.运动模糊
运动模糊的数学原理
运动模糊,是在拍摄设备快门打开的时间内,物体在成像平面上的投影发生平移或旋转,使接受的影像彼此发生重叠。
为了便于用数学语言描述图像及其变换,现作如下规定:图像的左上角为坐标原点(0,0),图像的长度方向为x轴,宽度方向为y轴,整个图像落在第一象限。
假设无任何模糊和噪声的真实图像为f(x,y),模糊图像为g(x,y)。由于运动模糊是由图像彼此重叠造成的,所以成立:
其中,Cx为图像在方向上的平移速度,Cy为在方向上的平移速度,T为快门打开时间即产生模糊图像的时间,n(x,y)为加性噪声。
计算机实现细节
为了简化计算过程,我假设只有运动模糊而没有任何加性噪声,而且产生模糊的运动是沿x方向的。
对于真实图像,模糊图像自然是原始图像的叠加,但对于数字图像,由于像素信息由数值表示,不能简单地将相应像素值相加,而是将像素信息缩小后相加,否则会使亮度成倍增加,使图像严重失真。
cv::Mat motionblur(cv::Mat in , unsigned int steps_x, unsigned int steps_y)
{
// steps_x steps_y should >= 2.
int rows = in.rows;
int cols = in.cols;
int channel = in.channels();
cv::Mat out(rows, cols, CV_8UC(channel));
int element = cols * channel;
if (steps_x != 0) {
for (size_t i = 0; i < rows; i++)
{
uchar * ptr_in = in.ptr<uchar>(i);
uchar * ptr_out = out.ptr<uchar>(i);
float sum_b = 0, sum_g = 0, sum_r = 0;
for (size_t j = 0; j < element; j += channel)
{
if ((j / channel) < steps_x) {
if (channel == 3) {
sum_b += ptr_in[j];
sum_g += ptr_in[j + 1];
sum_r += ptr_in[j + 2];
ptr_out[j] = static_cast<uchar>(sum_b / ((j / channel) + 1));
ptr_out[j + 1] = static_cast<uchar>(sum_g / ((j / channel) + 1));
ptr_out[j + 2] = static_cast<uchar>(sum_r / ((j / channel) + 1));
}
else if (channel == 1) {
sum_b += ptr_in[j];
ptr_out[j] = static_cast<uchar>(sum_b / (j + 1));
}
}
else {
if (channel == 3) {
sum_b = sum_b + ptr_in[j] - ptr_in[j - steps_x * channel];
sum_g = sum_g + ptr_in[j + 1] - ptr_in[j - steps_x * channel + 1];
sum_r = sum_r + ptr_in[j + 2] - ptr_in[j - steps_x * channel + 2];
ptr_out[j] = static_cast<uchar>(sum_b / steps_x);
ptr_out[j + 1] = static_cast<uchar>(sum_g / steps_x);
ptr_out[j + 2] = static_cast<uchar>(sum_r / steps_x);
}
else if (channel == 1) {
sum_b = sum_b + ptr_in[j] - ptr_in[j - steps_x];
ptr_out[j] = static_cast<uchar>(sum_b / steps_x);
}
}
}
}
}
if (steps_y != 0) {
for (size_t i = 0; i < cols; i++)
{
float sum_b = 0, sum_g = 0, sum_r = 0;
for (size_t j = 0; j < rows; j++)
{
if (j < steps_y) {
if (channel == 3) {
sum_b += in.at<cv::Vec3b>(j, i)[0];
sum_g += in.at<cv::Vec3b>(j, i)[1];
sum_r += in.at<cv::Vec3b>(j, i)[2];
out.at<cv::Vec3b>(j, i)[0] = static_cast<uchar>(sum_b / (j + 1));
out.at<cv::Vec3b>(j, i)[1] = static_cast<uchar>(sum_g / (j + 1));
out.at<cv::Vec3b>(j, i)[2] = static_cast<uchar>(sum_r / (j + 1));
}
else if(channel == 1){
sum_b += in.at<uchar>(j, i);
out.at<uchar>(j, i) = static_cast<uchar>(sum_b / (j + 1));
}
}
else {
if (channel == 3) {
sum_b = sum_b + in.at<cv::Vec3b>(j, i)[0] - in.at<cv::Vec3b>(j - steps_y, i)[0];
sum_g = sum_g + in.at<cv::Vec3b>(j, i)[1] - in.at<cv::Vec3b>(j - steps_y, i)[1];
sum_r = sum_r + in.at<cv::Vec3b>(j, i)[2] - in.at<cv::Vec3b>(j - steps_y, i)[2];
out.at<cv::Vec3b>(j, i)[0] = static_cast<uchar>(sum_b / steps_y);
out.at<cv::Vec3b>(j, i)[1] = static_cast<uchar>(sum_g / steps_y);
out.at<cv::Vec3b>(j, i)[2] = static_cast<uchar>(sum_r / steps_y);
} else if(channel == 1) {
sum_b = sum_b + in.at<uchar>(j, i) - in.at<uchar>(j-steps_y, i);
out.at<uchar>(j, i) = static_cast<uchar>(sum_b / steps_y);
}
}
}
}
}
return out;
}
实现效果
原图
处理之后的图
3.径向模糊
(与运动模糊原理一致)
PS里称为 径向模糊->缩放, 还有一种 径向模糊->旋转。
缩放的原理:
确定一个中心点(如0.5, 0.5), 跟当前像素连一条线. 以当前像素为中心, 在线上的附近像素进行采样, 最后取一下平均值.
同样,旋转的原理相似,就是相同半径的一定邻域内的均值。
缩放时,半径变化,旋转时,角度变化。
使用OpenCV实现
原图:
径向模糊->缩放:
#include <math.h>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace cv;
using namespace std;
int num=40;//num:均值力度;
int main()
{
Mat src = imread("D:/test3.jpg",1);
Mat src1u[3];
split(src,src1u);
int width=src.cols;
int heigh=src.rows;
Mat img;
src.copyTo(img);
Point center(width/2,heigh/2);
for (int y=0; y<heigh; y++)
{
uchar *imgP = img.ptr<uchar>(y);
for (int x=0; x<width; x++)
{
int R = norm(Point(x,y)-center);
double angle = atan2((double)(y-center.y),(double)(x-center.x));
int tmp0=0,tmp1=0,tmp2=0;
for (int i=0;i<num;i++) //num:均值力度 ,i为变化幅度;
{
int tmpR = (R-i)>0?(R-i):0;
int newX = tmpR*cos(angle) + center.x;
int newY = tmpR*sin(angle) + center.y;
if(newX<0)newX=0;
if(newX>width-1)newX=width-1;
if(newY<0)newY=0;
if(newY>heigh-1)newY=heigh-1;
tmp0 += src1u[0].at<uchar>(newY,newX);
tmp1 += src1u[1].at<uchar>(newY,newX);
tmp2 += src1u[2].at<uchar>(newY,newX);
}
imgP[3*x]=(uchar)(tmp0/num);
imgP[3*x+1]=(uchar)(tmp1/num);
imgP[3*x+2]=(uchar)(tmp2/num);
}
}
imshow("径向模糊",img);
waitKey();
imwrite("D:/径向模糊(缩放).jpg",img);
}
径向模糊->旋转:
#include <math.h>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace cv;
using namespace std;
int num=20; //均值力度;
int main()
{
Mat src = imread("D:/test3.jpg",1);
Mat src1u[3];
split(src,src1u);
int width=src.cols;
int heigh=src.rows;
Mat img;
src.copyTo(img);
Point center(width/2,heigh/2);
for (int y=0; y<heigh; y++)
{
uchar *imgP = img.ptr<uchar>(y);
for (int x=0; x<width; x++)
{
int R = norm(Point(x,y)-center);
double angle = atan2((double)(y-center.y),(double)(x-center.x));
int tmp0=0,tmp1=0,tmp2=0;
for (int i=0;i<num;i++) //均值力度;
{
angle+=0.01; //0.01控制变化频率,步长
int newX = R*cos(angle) + center.x;
int newY = R*sin(angle) + center.y;
if(newX<0)newX=0;
if(newX>width-1)newX=width-1;
if(newY<0)newY=0;
if(newY>heigh-1)newY=heigh-1;
tmp0 += src1u[0].at<uchar>(newY,newX);
tmp1 += src1u[1].at<uchar>(newY,newX);
tmp2 += src1u[2].at<uchar>(newY,newX);
}
imgP[3*x]=(uchar)(tmp0/num);
imgP[3*x+1]=(uchar)(tmp1/num);
imgP[3*x+2]=(uchar)(tmp2/num);
}
}
imshow("径向模糊",img);
waitKey();
imwrite("D:/径向模糊(旋转).jpg",img);