Problem Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Examples
Input1
5 4
Output1
36
Input2
3 4
Output2
20
思路:
已知从一个点 (x,y) 到原点的能量损失为两点连成一条直线后,直线上的点数*2+1
那么考虑横纵坐标的关系,画个图算几组数据可以发现,将 (0,0)、(x,y) 两点连成一条线后,出去这条线上的两个端点有 GCD(x,y)-1 个点,那么每个点的贡献就是
设 f(d) 为 gcd(x,y)=d 的点的数量,那么问题就转化为计算:
由于 ,因此最终答案为:
因此,问题的关键是快速计算:
设 g(d) 为 满足 d|gcd(x,y) 的个数,即:
可以看出,g(k)、f(d) 符合莫比乌斯反演的形式:
于是有:
设 ,那么:
所以:
此时的复杂度是 O(n^2) 的,发现式子中有整除,利用整除分块两次求和,每次时间复杂度为 O(√n),总复杂度为 O(√n*√n) 即 O(n)
Source Program
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL quickModPow(LL a,LL b,LL mod){ LL res=1; a=a%mod; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1;} return res; }
LL getInv(LL a,LL mod){ return quickModPow(a,mod-2,mod); }
const double EPS = 1E-10;
const int MOD = 1E9+7;
const int N = 100000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;
int mu[N];
int prime[N];
bool bprime[N];
int cnt;
LL sum[N];
void getMu(int n){//线性筛求莫比乌斯函数
cnt=0;
mu[1]=1;//根据定义,μ(1)=1
memset(bprime,false,sizeof(bprime));
for(int i=2;i<=n;i++){//求2~n的莫比乌斯函数
if(!bprime[i]){
prime[++cnt]=i;//存储质数
mu[i]=-1;//i为质数时,μ(1)=-1
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){//枚举i之前的素数个数
bprime[i*prime[j]]=true;//不是质数
if(i%prime[j])//i不是prime[j]的整数倍时,i*prime[j]就不会包含相同质因子
mu[i*prime[j]]=-mu[i];//mu[k]=mu[i]*mu[prime[j]],因为prime[j]是质数,mu值为-1
else{
mu[i*prime[j]]=0;
break;//留到后面再筛
}
}
}
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+mu[i];
}
LL cal(LL n,LL m,LL minn){
LL res=0;
for(LL left=1,right;left<=minn;left=right+1){
right=min(n/(n/left),m/(m/left));
res+=(sum[right]-sum[left-1])*(n/left)*(m/left);
}
return res;
}
int main(){
getMu(100000);
LL n,m;
scanf("%lld%lld",&n,&m);
LL res=0;
LL minn=min(n,m);
for (LL left=1,right;left<=minn;left=right+1){
right=min(n/(n/left),m/(m/left));
LL temp=(LL)(right+left)*(right-left+1)/2;
res+=cal(n/left,m/left,minn/left)*temp;
}
res=res*2-n*m;
printf("%lld\n",res);
// system("pause");
return 0;
}