算术(HDU-6715)

Problem Description

 

定义一个函数 μ(x):如果 x 等于 k 个不同的质数的乘积,则 μ(x)=(−1)^k,否则(即 x 有大于 1 的平方因子) μ(x)=0 

定义 lcm(a,b) 为 a,b 的最小公倍数,给定 n,m,你需要求: \sum_{i=1}^n\sum_{j=1}^mu(lcm(i,j))

Input

第一行一个正整数 T(T≤10) 表示数据组数 

接下来 T 行,每行两个正整数 n,m(1≤n,m≤106),表示一次询问

Output

输出 T 行,每行一个整数表示该组数据的答案

Examples

Input

2
2 4
5 5

Output

-2
-2

思路:

对于式子 res=\sum_{i=1}^n\sum_{j=1}^mu(lcm(i,j)) 进行化简,有:res=\sum_{i=1}^n\sum_{j=1}^mu(\frac{ij}{gcd(i,j)})=\sum_{k=1}^{min(n,m)}\sum_{i=1}^n\sum_{j=1}^mu(\frac{ij}{k})[gcd(i,j)=k]

将 ij 拆分,有:res=\sum_{k=1}^{min(n,m)}\sum_{i=1}^n\sum_{j=1}^mu(\frac{i}{k}*\frac{j}{k}*k)[gcd(i,j)=k]

由于莫比乌斯函数是积性函数,那么有:res=\sum_{k=1}^{min(n,m)}\sum_{i=1}^n\sum_{j=1}^mu(\frac{i}{k})u(\frac{j}{k})u(k)[gcd(\frac{i}{k},\frac{j}{k},k)=1]

将 k 提出,有:res=\sum_{k=1}^{min(n,m)}u(k)\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}u(i)u(j)[gcd(i,j,k)=1]

考虑莫比乌斯函数 u(x) 的性质,已知:u(x) 为积性函数,当 gcd(i,j)=1 时,有 u(i*j)=u(i)*u(j)

即:u(i*j)=u(i)*u(j)*[gcd(i,j)=1]

进行推广:当 gcd(i,j,k)=1 时,有:gcd(i,j)=gcd(i,k)=gcd(j,k)=1

那么对于 k 来说,当满足:u(i)*u(j)*[gcd(i,k)=1]*[gcd(j,k)=1] 时

有:\begin{align*} &u(i)*u(j)*[gcd(i,k)=1]*[gcd(j,k)=1] \\ &= u(i)*u(j)*(u(k))^2*[gcd(i,k)=1]*[gcd(j,k)=1]\\ &= u(i*k)*u(j*k) \end{align*}

因此,有:res=\sum_{k=1}^{min(n,m)}u(k)\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}u(ik)u(jk)[gcd(i,j)=1]

进行反演,有:res=\sum_{k=1}^{min(n,m)}u(k)\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}u(ik)u(jk)\sum_{d|gcd(i,j)}u(d)

进行化简,有:res=\sum_{k=1}^{min(n,m)}\sum_{d=1}^{min(\frac {n}{d},\frac{m}{d})}\sum_{i=1}^{\frac{n}{dk}}\sum_{j=1}^{\frac{m}{dk}}u(k)u(d) u(ikd)u(jkd)

 

设 t=dk,进一步化简:res=\sum_{t=1}^{min(n,m)}(\sum_{k|t}u(k)u(\frac{t}{k}))(\sum_{i=1}^{\frac{n}{t}}u(it))(\sum_{j=1}^\frac{m}{t}u(jt))

预处理 res=\sum_{k|t}u(k)u(\frac{t}{k}) 即可

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL quickModPow(LL a,LL b,LL mod){ LL res=1; a=a%mod; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1;} return res; }
LL getInv(LL a,LL mod){ return quickModPow(a,mod-2,mod); }
const double EPS = 1E-10;
const int MOD = 20101009;
const int N = 1000000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;

int mu[N];
int prime[N];
bool bprime[N];
int cnt;
LL sum[N];
void getMu(int n){//线性筛求莫比乌斯函数
    cnt=0;
    mu[1]=1;//根据定义,μ(1)=1
    memset(bprime,false,sizeof(bprime));
 
    for(int i=2;i<=n;i++){//求2~n的莫比乌斯函数
        if(!bprime[i]){
            prime[++cnt]=i;//存储质数
            mu[i]=-1;//i为质数时,μ(1)=-1
        }
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++){//枚举i之前的素数个数
            bprime[i*prime[j]]=true;//不是质数
            if(i%prime[j])//i不是prime[j]的整数倍时,i*prime[j]就不会包含相同质因子
                mu[i*prime[j]]=-mu[i];//mu[k]=mu[i]*mu[prime[j]],因为prime[j]是质数,mu值为-1
            else{
                mu[i*prime[j]]=0;
                break;//留到后面再筛
            }
        }
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n/i;j++)
            sum[i*j]+=mu[i]*mu[j];
}
int main(){
    getMu(1000000);
    int t;
    scanf("%d",&t);
    while(t--){
        int n,m;
        scanf("%d%d",&n,&m);
        if(n>m)
            swap(n,m);

        LL res=0;
        for(int t=1;t<=n;t++){
            LL sum1=0,sum2=0;
            for(int i=1;i<=n/t;i++)
                sum1+=mu[i*t];
            for(int j=1;j<=m/t;j++)
                sum2+=mu[j*t];
            res+=sum1*sum2*sum[t];
        }
        printf("%lld\n",res);
    }

    return 0; 
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值