Acesrc and Good Numbers(HDU-6659)

Problem Description

Acesrc is a famous mathematician at Nanjing University second to none. Playing with interesting numbers is his favorite. Today, he finds a manuscript when cleaning his room, which reads

... Let f(d,n) denote the number of occurrences of digit d in decimal representations of integers 1,2,3,⋯,n. The function has some fantastic properties ...

... Obviously, there exist some nonnegative integers k, such that f(d,k)=k, and I decide to call them d-good numbers ...

... I have found all d-good numbers not exceeding 101000, but the paper is too small to write all these numbers ...

Acesrc quickly recollects all d-good numbers he found, and he tells Redsun a question about d-good numbers: what is the maximum d-good number no greater than x? However, Redsun is not good at mathematics, so he wants you to help him solve this problem.

Input

The first line of input consists of a single integer q (1≤q≤1500), denoting the number of test cases. Each test case is a single line of two integers d (1≤d≤9) and x (0≤x≤1018).

Output

For each test case, print the answer as a single integer in one line. Note that 0 is trivially a d-good number for arbitrary d.

Sample Input

3
1 1
1 199999
3 0

Sample Output

1
199990
0

题意:t 组数据,定义函数 f(d,n) 为 1~n 的十进制位中数字 d 出现的个数,每组给出 d、x 两个数,现在要在 1~x 中找一个最大的 k,使得 f(d,k)=k,求这个 k

思路:

首先计算 f(d,x),如果 f(d,x)=x,那么自然就是结果

如果 f(d,x)<x,由于 f(d,x) 与 x 之间的数一定是大于想求的结果的,那么就可以把 x 赋值为 f(d,x),再次代入求结果,直到 f(d,x)=x 为止

如果 f(d,x)>x,最坏的情况下,数的长度为 m 位,所有的位数都是 d,那么如果想让 f(d,x) 与 x 相等,至少要让他减去 f(d,x)-x/m 个数,因此在这种情况下,只要让 x=x-(f(d,x)-x)/m 即可

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<unordered_map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL multMod(LL a,LL b,LL mod){ a%=mod; b%=mod; LL res=0; while(b){if(b&1)res=(res+a)%mod; a=(a<<=1)%mod; b>>=1; } return res%mod;}
LL quickMultPowMod(LL a, LL b,LL mod){ LL res=1,k=a; while(b){if((b&1))res=multMod(res,k,mod)%mod; k=multMod(k,k,mod)%mod; b>>=1;} return res%mod;}
LL quickPowMod(LL a,LL b,LL mod){ LL res=1; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1; } return res; }
LL getInv(LL a,LL mod){ return quickPowMod(a,mod-2,mod); }
LL GCD(LL x,LL y){ return !y?x:GCD(y,x%y); }
LL LCM(LL x,LL y){ return x/GCD(x,y)*y; }
const double EPS = 1E-10;
const int MOD = 1000000000+7;
const int N = 500000+5;
const int dx[] = {0,0,-1,1,1,-1,1,1};
const int dy[] = {1,-1,0,0,-1,1,-1,1};
using namespace std;

LL f(LL n, LL x) { //计算1~n中,x出现的次数
    LL cnt = 0, k;
    for (LL i = 1; k = n / i; i *= 10) {
        cnt += (k / 10) * i;
        LL cur = k % 10;
        if (cur > x)
            cnt += i;
        else if (cur == x)
            cnt += n - k * i + 1;
    }
    return cnt;
}
LL getLen(LL n) { //获取n的长度
    LL len = 0;
    while (n) {
        len++;
        n /= 10;
    }
    return len;
}
int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        LL d, x;
        scanf("%lld%lld", &d, &x);
        while (true) {
            LL n = f(x, d);
            if (n == x) {
                printf("%lld\n", n);
                break;
            } 
            else if (n < x)
                x = n;
            else{
                LL m=getLen(n);
                x = x - max((n - x) / m, 1LL);
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值