Collecting Coins(CF-1294A)

Problem Description

Polycarp has three sisters: Alice, Barbara, and Cerene. They're collecting coins. Currently, Alice has a coins, Barbara has b coins and Cerene has c coins. Recently Polycarp has returned from the trip around the world and brought n coins.

He wants to distribute all these n coins between his sisters in such a way that the number of coins Alice has is equal to the number of coins Barbara has and is equal to the number of coins Cerene has. In other words, if Polycarp gives A coins to Alice, B coins to Barbara and C coins to Cerene (A+B+C=n), then a+A=b+B=c+C.

Note that A, B or C (the number of coins Polycarp gives to Alice, Barbara and Cerene correspondingly) can be 0.

Your task is to find out if it is possible to distribute all n coins between sisters in a way described above.

You have to answer t independent test cases.


The first line of the input contains one integer t (1≤t≤104) — the number of test cases.

The next t lines describe test cases. Each test case is given on a new line and consists of four space-separated integers a,b,c and n (1≤a,b,c,n≤108) — the number of coins Alice has, the number of coins Barbara has, the number of coins Cerene has and the number of coins Polycarp has.


For each test case, print "YES" if Polycarp can distribute all n coins between his sisters and "NO" otherwise.



5 3 2 8
100 101 102 105
3 2 1 100000000
10 20 15 14
101 101 101 3



题意:小 A、小 B、小 C 三人各有 a、b、c 枚硬币,现在有 n 枚硬币,问是否存在一种对 n 枚硬币的分割方案,使得小 A、小 B、小 C 分别获得 A、B、C 枚硬币,使得 A+a=B+b=C+c,且 A+B+C=n


首先找出 a、b、c 中的最大值 maxx,以最大值为基准计算三人都达到最大值 maxx 的硬币是多少

然后从 n 枚硬币中减去使三人都达到最大值 maxx 的硬币数 maxx-a、maxx-b、maxx-c

剩下的硬币数如果满足 n>=0 且能被 3 整除,就说明存在一种分割方案,否则说明不存在

Source Program

#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL multMod(LL a,LL b,LL mod){ a%=mod; b%=mod; LL res=0; while(b){if(b&1)res=(res+a)%mod; a=(a<<=1)%mod; b>>=1; } return res%mod;}
LL quickMultPowMod(LL a, LL b,LL mod){ LL res=1,k=a; while(b){if((b&1))res=multMod(res,k,mod)%mod; k=multMod(k,k,mod)%mod; b>>=1;} return res%mod;}
LL quickPowMod(LL a,LL b,LL mod){ LL res=1; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1; } return res; }
LL getInv(LL a,LL mod){ return quickPowMod(a,mod-2,mod); }
LL GCD(LL x,LL y){ return !y?x:GCD(y,x%y); }
LL LCM(LL x,LL y){ return x/GCD(x,y)*y; }
const double EPS = 1E-6;
const int MOD = 1000000000+7;
const int N = 100000+5;
const int dx[] = {0,0,-1,1,1,-1,1,1};
const int dy[] = {1,-1,0,0,-1,1,-1,1};
using namespace std;

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        LL a, b, c, n;
        scanf("%lld%lld%lld%lld", &a, &b, &c, &n);
        LL maxx = max(max(a, b), c);
        n = n - (maxx - a) - (maxx - b) - (maxx - c);
        if (n >= 0 && n % 3 == 0)
    return 0;


©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页