# Problem Description

Polycarp has three sisters: Alice, Barbara, and Cerene. They're collecting coins. Currently, Alice has a coins, Barbara has b coins and Cerene has c coins. Recently Polycarp has returned from the trip around the world and brought n coins.

He wants to distribute all these n coins between his sisters in such a way that the number of coins Alice has is equal to the number of coins Barbara has and is equal to the number of coins Cerene has. In other words, if Polycarp gives A coins to Alice, B coins to Barbara and C coins to Cerene (A+B+C=n), then a+A=b+B=c+C.

Note that A, B or C (the number of coins Polycarp gives to Alice, Barbara and Cerene correspondingly) can be 0.

Your task is to find out if it is possible to distribute all n coins between sisters in a way described above.

You have to answer t independent test cases.

# Input

The first line of the input contains one integer t (1≤t≤104) — the number of test cases.

The next t lines describe test cases. Each test case is given on a new line and consists of four space-separated integers a,b,c and n (1≤a,b,c,n≤108) — the number of coins Alice has, the number of coins Barbara has, the number of coins Cerene has and the number of coins Polycarp has.

# Output

For each test case, print "YES" if Polycarp can distribute all n coins between his sisters and "NO" otherwise.

Input

5
5 3 2 8
100 101 102 105
3 2 1 100000000
10 20 15 14
101 101 101 3

Output

YES
YES
NO
NO
YES

# Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL multMod(LL a,LL b,LL mod){ a%=mod; b%=mod; LL res=0; while(b){if(b&1)res=(res+a)%mod; a=(a<<=1)%mod; b>>=1; } return res%mod;}
LL quickMultPowMod(LL a, LL b,LL mod){ LL res=1,k=a; while(b){if((b&1))res=multMod(res,k,mod)%mod; k=multMod(k,k,mod)%mod; b>>=1;} return res%mod;}
LL quickPowMod(LL a,LL b,LL mod){ LL res=1; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1; } return res; }
LL getInv(LL a,LL mod){ return quickPowMod(a,mod-2,mod); }
LL GCD(LL x,LL y){ return !y?x:GCD(y,x%y); }
LL LCM(LL x,LL y){ return x/GCD(x,y)*y; }
const double EPS = 1E-6;
const int MOD = 1000000000+7;
const int N = 100000+5;
const int dx[] = {0,0,-1,1,1,-1,1,1};
const int dy[] = {1,-1,0,0,-1,1,-1,1};
using namespace std;

int main() {
int t;
scanf("%d", &t);
while (t--) {
LL a, b, c, n;
scanf("%lld%lld%lld%lld", &a, &b, &c, &n);
LL maxx = max(max(a, b), c);
n = n - (maxx - a) - (maxx - b) - (maxx - c);
if (n >= 0 && n % 3 == 0)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

Alex_McAvoy

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
10-25
04-02 6万+

07-21 610
06-20 1401
04-22
09-11
01-16 8515
05-17 10万+
04-02
09-15