动态规划 —— 背包问题 P05 —— 二维背包

【问题】

对于每件物品,具有两种不同的体积,选择这件物品必须同时付出这两种代价,对于每种代价都有一个可付出的最大值(背包容量)。

问:怎样选择物品可以得到最大的价值?

设:这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为c[i]。

【算法】

费用加了一维,只需状态也加一维即可。

设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。

状态转移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+c[i]}

如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。当物品有如多重背包问题时拆分物品。

【物品总个数的限制】

有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

【实现】

设s[i][j][k]表示将前i件物品放入两种容量分别为j和k的背包时所能获得的最大价值,则状态转移方程为f[i][j][k]=max{f[i-1][j][k], f[i-1][j-v[i]][k-u[i]]+c[i]},递推边界为当i=0时f[i][j][k]=0。和01背包类似,状态的维数可以轻易的从三维降低到二维,具体实现见下。

for (int i=0; i<=V; i++) // 边界
      for (int j=0; j<=U; j++)
          s[i][j]=0; 
for (int i=1; i<=N; i++)
      for (int j=V; j>=v[i]; j--)
            for (int k=U; k>=u[i]; k--) 
                s[j][k]=max(s[j][k], s[j-v[i]][k-u[i]]+c[i]);

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值