菲波那契数列(信息学奥赛一本通-T1201)

【题目描述】

菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和。
给出一个正整数a,要求菲波那契数列中第a个数是多少。

【输入】

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数a(1≤a≤20)。

【输出】

输出有n行,每行输出对应一个输入。输出应是一个正整数,为菲波那契数列中第a个数的大小。

【输入样例】

​4
5
2
19
1

【输出样例】

​5
1
4181
1

【源程序】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
int Fibonacci(int n)
{
    if(n==1)
        return 1;
    if(n==2)
        return 1;
    return Fibonacci(n-1)+Fibonacci(n-2);
}
int main()
{
    int n,x;
    cin>>n;
    while(n--)
    {
        cin>>x;
        cout<<Fibonacci(x)<<endl;
    }
    return 0;
}
### 关于C++实现斐波那契数列信息学奥赛题目解析 在信息学竞赛中,斐波那契数列一个常见的算法练习题。这类问题常考察选手对于递归、迭代以及动态规划的理解。 #### 解题思路 解决斐波那契数列计算的问题有多种方法: - **递归法**:最直观的方法是过定义函`fib(n)`来表示第n项的值等于前两项之和。然而这种方法存在大量重复计算,在大据量下效率极低[^1]。 - **记忆化搜索(带缓存的递归)**:为了避免上述递归方式中的冗余运算,可以在每次调用时保存已经求得的结果,下次遇到相同参直接返回之前存储的答案,从而大大提高性能[^2]。 - **循环迭代**:采用自底向上的方式进累加更新两个相邻变量直到达到目标位置,此做法时间复杂度为O(n),空间上只需要常级别的额外内存即可完成操作[^3]。 - **矩阵快速幂优化**:利用线性代的知识可以进一步加速大范围内的查询速度,特别是当输入规模非常庞大时尤为有效[^4]。 下面给出基于简单迭代版本的一个具体实例代码如下所示: ```cpp #include <iostream> using namespace std; int fibonacci(int n) { if (n <= 0) return 0; int a = 0, b = 1, c; while (--n >= 0){ c = a + b; a = b; b = c; } return a; } int main() { int num; cout << "请输入要计算的斐波那契序列的位置:"; cin >> num; cout << "Fibonacci("<<num<<") = "<< fibonacci(num)<< endl; } ``` 该程序实现了非负整范围内任意指定索引处对应值的有效获取功能,并且具有较好的执效能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值