区间合并(信息学奥赛一本通-T1236)

本文介绍了一种区间合并算法,用于判断多个闭区间是否能合并成一个闭区间,并给出合并后的区间范围。通过排序和遍历的方式实现,适用于解决区间覆盖问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

给定 n 个闭区间 [ai; bi],其中i=1,2,...,n。任意两个相邻或相交的闭区间可以合并为一个闭区间。例如,[1;2] 和 [2;3] 可以合并为 [1;3],[1;3] 和 [2;4] 可以合并为 [1;4],但是[1;2] 和 [3;4] 不可以合并。

我们的任务是判断这些区间是否可以最终合并为一个闭区间,如果可以,将这个闭区间输出,否则输出no。

【输入】

第一行为一个整数n,3 ≤ n ≤ 50000。表示输入区间的数量。

之后n行,在第i行上(1 ≤ i ≤ n),为两个整数 ai 和 bi ,整数之间用一个空格分隔,表示区间 [ai; bi](其中 1 ≤ ai ≤ bi ≤ 10000)。

【输出】

输出一行,如果这些区间最终可以合并为一个闭区间,输出这个闭区间的左右边界,用单个空格隔开;否则输出 no。

【输入样例】

5
5 6
1 5
10 10
6 9
8 10

【输出样例】

1 10

【源程序】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<string>
#define INF 999999999
#define N 50001
#define MOD 1000000007
using namespace std;
struct node{
    int left,right;
}a[N];
int cmp(struct node a,struct node b)
{
    return a.left<b.left||a.left==b.left&&a.right<b.right;
}
int main()
{
    int n;
    int i;
    int max=-INF;

    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>a[i].left>>a[i].right;
    sort(a+1,a+1+n,cmp);

    for(i=1;i<n;i++)
    {
        if(a[i].right>max)
            max=a[i].right;
        if(a[i+1].left>max)
        {
            cout<<"no"<<endl;
            return 0;
        }
    }
    if(a[i].right>max)
        max=a[i].right;
    cout<<a[1].left<<" "<<max;
    return 0;
}

 

### 关于信息学奥赛一本中求逆序对的解题方法 #### 归排序算法实求逆序对数量 归排序是一种分治算法,在排序过程中可以统计数组中的逆序对数目。过每次合两个有序序列时计算跨越这两个子序列之间的逆序对,最终得到整个数组内的全部逆序对。 当左半部分元素大于右半部分当前处理位置上的元素,则说明存在若干个逆序对,这些逆序对的数量等于左边剩余未比较过的元素个数。这是因为对于每一个这样的左侧较大值而言,右侧已经遍历到的位置之前的所有数值都小于它,从而构成一组新的逆序关系[^1]。 ```cpp #include <iostream> using namespace std; typedef long long ll; ll cnt; // 记录逆序对总数 const int maxn = 5e5 + 7; int a[maxn], tmp[maxn]; void merge(int l, int mid, int r){ int i=l,j=mid+1,k=l; while(i<=mid && j<=r){ if(a[i]<=a[j]){ tmp[k++]=a[i++]; }else{ cnt += (mid-i+1); // 统计逆序对 tmp[k++] = a[j++]; } } while(i<=mid)tmp[k++] = a[i++]; while(j<=r)tmp[k++] = a[j++]; for(int p=l;p<=r;++p)a[p]=tmp[p]; } void mergesort(int l,int r){ if(l>=r)return ; int m=(l+r)>>1; mergesort(l,m); mergesort(m+1,r); merge(l,m,r); } ``` 此代码实了基于归排序来解决逆序对问题的方法。`cnt`变量用于累计所有的逆序对数目;函数`merge()`负责将两个已排序区间合并的同时完成跨区间的逆序对检测工作;而`mergesort()`则是递归调用来分别对左右两部分进行排序以及后续的合操作[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值