数字组合(信息学奥数一本通-T1291)

本文介绍了一种使用动态规划解决组合计数问题的方法。给定一组正整数和目标和t,程序计算所有可能的不同组合数量,使得这些组合的元素之和等于t。通过迭代更新二维数组来记录中间结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式。如:

n=5,5个数分别为1,2,3,4,5,t=5;

那么可能的组合有5=1+4和5=2+3和5=5三种组合方式。

【输入】

输入的第一行是两个正整数n和t,用空格隔开,其中1≤n≤20,表示正整数的个数,t为要求的和(1≤t≤1000);

接下来的一行是n个正整数,用空格隔开。

【输出】

和为t的不同的组合方式的数目。

【输入样例】

5 5
1 2 3 4 5

【输出样例】

3

【源程序】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 2520
#define E 1e-12
using namespace std;
int n,t;
int w[N];
long long f[N][N];
int main()
{
    cin>>n>>t;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i];
        f[i][w[i]]=1;
    }

    for(int i=1;i<=n;i++)
        for(int j=1;j<=t;j++)
            if(j<w[i])
                f[i][j]+=f[i-1][j];
            else
                f[i][j]+=f[i-1][j]+f[i-1][j-w[i]];
    cout<<f[n][t]<<endl;
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值