糖果(信息学奥赛一本通-T1299)

Dzx因维护世界和平获得无限量糖果优惠券,需从N件产品中选择糖果总数为K倍数的最大值。本题涉及动态规划算法,通过记录状态转移过程找到最优解。

【题目描述】

由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖果总数是K的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。当然,在满足这一条件的基础上,糖果总数越多越好。Dzx最多能带走多少糖果呢?

注意:Dzx只能将糖果公司的产品整件带走。

【输入】

第一行包含两个整数N(1≤N≤100)和K(1≤K≤100)。

以下N行每行1个整数,表示糖果公司该件产品中包含的糖果数目,不超过1000000。

【输出】

符合要求的最多能达到的糖果总数,如果不能达到K的倍数这一要求,输出0。

【输入样例】

5 7
1
2
3
4
5

【输出样例】

14

【源程序】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 2520
#define E 1e-12
using namespace std;
int a[N];
int f[N][N];
int main()
{
    int n,k;
    cin>>n>>k;
    for(int i=1;i<=n;i++)
        cin>>a[i];

    for(int i=1;i<k;i++)
        f[0][i]=-INF;
    for(int i=1;i<=n;i++)
        for(int j=0;j<k;j++)
            f[i][j]=max(f[i-1][j],f[i-1][(k+j-a[i]%k)%k]+a[i]);

    cout<<f[n][0]<<endl;
    return 0;
}

 

信息学奥赛一本中涉及“糖果问题”的题目主要有几道经典题目,其中最具有代表性的是动态规划类题目和递推类题目。 ### 3072 糖果游戏 这道题是一个典型的模拟题,主要过数组模拟数据的传递与计算,涉及分配与再分配的过程。程序逻辑主要围绕着将糖果按照规则进行多次分配与传递,最终输出每个位置的糖果数量。该题过多次的除法与加法操作实现数据的传递,核心在于理解每一步的处理逻辑,并按顺序执行各个操作。 ### 1299糖果(动态规划) 这是一个经典的动态规划问题,题目要求从N件产品中选择若干件,使得所选糖果总数是K的整数倍,并且尽可能多。这道题的核心在于状态定义和状态转移方程的设计。 状态定义为: - `dp[i][j]` 表示从前`i`个物品中选择,使得总糖果数模`K`等于`j`时的最大糖果数。 状态转移方程为: - 对于第`i`个物品,可以选择或者不选。如果不选,则状态继承前`i-1`个物品的状态;如果选,则需要在原来的基础上加上当前物品的糖果数,并更新模值。 动态规划的核心思想是利用模运算的性质,不断更新当前的最大糖果数,并最终找出模值为0时的最大值[^3]。 ### 1193:吃糖果(递推算法) 这道题采用递推算法,题目描述了每天吃糖果的不同方式,即每天可以选择吃一块或者两块糖果,求出总共吃`n`块糖果的不同方法数。其递推公式为: - `a[i] = a[i-1] + a[i-2]` 递推初始值为`a[1] = 1`, `a[2] = 2`,过循环计算得到`a[n]`,最终结果即为总的方法数[^4]。 ### 示例代码 以下是递推算法的代码示例: ```cpp #include <bits/stdc++.h> using namespace std; int n; long long a[25]; int main() { cin >> n; a[1] = 1; a[2] = 2; for(int i = 3; i <= n; i++) { a[i] = a[i - 1] + a[i - 2]; } cout << a[n]; return 0; } ``` ### 总结 信息学奥赛一本中的糖果问题涵盖了多种算法类型,包括动态规划、递推以及模拟等。过这些题目可以提升对算法设计与实现的理解,尤其是动态规划在处理模运算问题时的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值