【整除】
1.定义
若 q
Z , s.t. b=a*q ,则称 b 被 a 整除,记作 a|b,其中,b 是 a 的倍数,a 是b 的约数。
2.性质
1)若 a|b 且 b|c,则:a|c
2)若 a|b 且 a|c,对于 x,y
Z,有:a|(b*x+c*y)
3)若 a|b 且 m
0,则:(m*a)|(m*b)
4)若 a|n 且 b|n,当 x,y
Z,满足:a*x+b*y=1 时,有:(a*b)|n
3.能被整除的整数的特征
1)0 与 1 的特性:对于任何整数a,总有:1|a;若 a≠0,则:a|0
2)能被 2 整除的数:整数的个位能被 2 整除
3)能被 4 整除的数:整数末尾的两位数能被 4 整除
4)能被 8 整除的数:整数末尾的三位数能被 8 整除
5)能被 3 整除的数:整数各位数字之和能被 3 整除
6)能被 6 整除的数:整数能被 2、3 同时整除
7)能被 9 整除的数:整数各位数字之和能被 9 整除
8)能被 5 整除的数:整数的末位是 0 或 5
9)能被 7 整除的数:截去整数的个位,再减去个位数的 2 倍,若差是 7 的倍数,则原数能被7整除。
注:若所得新数差太大或扔不易看出是否为 7 的倍数,需要继续上述「截尾、倍大、相减、验差」的过程,直到能判断为止
10) 能被 11 整除的数:整数的奇位和与偶位和的差能被 11 整除
【同余】
1.定义
若 a,b
Z,且 m|(a-b),则称 a 与 b 关于模 m 同余,记为:a
b(mod m)
同余意味着 a-b=m*k,k Z,例如:32
2(mod 5),此时 k=6
2.性质
1)基础性质
① 传递性:若 a b(mod m),b
c(mod m),则:a
c(mod m)
② 对称性:若 a b(mod m),则:b
a(mod m)
③ 自反性: a a(mod m)
2)运算性质
① 同加性:若 a b(mod m),则:a+c
b+c(mod m)
② 同幂性:若 a b(mod m),则:
(mod m)
③ 同乘性:
若 a b(mod m),则:a*c
b*c(mod m)
若 a b(mod m),c
d(mod m),则:a*c
b*d(mod m)
3)推论
① 若 a mod p=x,a mod q=x,且 p、q 互质,则 a mod p*q =x
② a*b mod k=(a mod k) *(b mod k) mod k
【同余式定理】
1.同余模公式
- (A+B)%M = (A%M+B%M) % M
- (A*B)%M = (A%M*B%M+M) % M
- (A/B)%M = (A*C)%M = (A%M*C%M) % M,其中 B*C≡1(mod M),B、M 互质,C 称为 B 的逆元
关于逆元:点击这里
(A/B)%M 的推导:(A/B)%M = (A/B) * 1 % M = (A/B)*B*C % M = (A*C) % M
2.威尔逊定理
若 p 为素数,则:
其逆定理同样成立,即:若 ,则 p 为素数
3.二次探测定理
内容:若 p 是素数且 0<x<p,则 仅有的两个解为:x=1,p-1
证明:
由于 ,因此:
,也即
因为 p 是素数,因此 p 必然是或整除 x-1 或整除 x+1,由此可推出定理。
4.费马小定理
对于正整数 a、b、p,若 p 是质数且
那么:
因此:
5.欧拉定理
对于正整数 a、m,若 a 与 m 互质
有:
因此:
关于欧拉函数 :点击这里
6.扩展欧拉定理
对于三个正整数 a、b、m
有:
模版:点击这里