YY的GCD(洛谷-P2257)

题目描述

神犇YY虐完数论后给傻×kAc出了一题

给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对

kAc这种傻×必然不会了,于是向你来请教……

多组输入

输入输出格式

输入格式:

第一行一个整数T 表述数据组数

接下来T行,每行两个正整数,表示N, M

输出格式:

T行,每行一个整数表示第i组数据的结果

输入输出样例

输入样例#1:

2
10 10
100 100

输出样例#1:

30
2791

思路:

问题实质是求 res=\sum_{i=1}^n\sum_{j=1}^m[gcd(x,y)=prime] 的值

设 f(k) 为满足 GCD(i,j)=k 的个数,即:f(k)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]

g(k) 为满足 GCD(i,j)=k 的倍数的个数,即:g(k)=\sum_{k|d}f(d)=\left \lfloor \frac{n}{k} \right \rfloor \left \lfloor \frac{m}{k} \right \rfloor

可以看出,g(k) 与 f(d) 间满足莫比乌斯反演的形式:g(n)=\sum_{n|d}f(d) \Leftrightarrow f(n)=\sum_{n|d} u(\frac{d}{n})g(d)

那么,对 res=\sum_{i=1}^n\sum_{j=1}^m[gcd(x,y)=prime] 进行化简

那么有:res=\sum_{p \in prime}\sum_{i=1}^n\sum_{j=1}^m[gcd(x,y)=p]

将 f(k) 代入,得:res=\sum_{p \in prime}f(p)

根据莫比乌斯反演:res=\sum_{p\in prime}\sum_{p|d} u(\frac{d}{p})g(d)=\sum_{p|d} u(\frac{d}{p})\left \lfloor \frac{n}{d} \right \rfloor\left \lfloor \frac{m}{d} \right \rfloor

将枚举项 \left \lfloor \frac{d}{p} \right \rfloor 更换为 d

那么有:res=\sum_{p \in prime} \sum_{d=1}^{minn}u(d)g(d*p)=\sum_{p \in prime} \sum_{d=1}^{minn}u(d)\left \lfloor \frac{n}{d*p} \right \rfloor\left \lfloor \frac{m}{d*p} \right \rfloor

设 T=d*p,那么有:res=\sum_{T=1}^{min(n,m)}\sum_{t|T,t\in prime}u(\left \lfloor \frac{T}{t} \right \rfloor)\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor

即:res=\sum_{T=1}^{min(n,m)}\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor (\sum_{t|T,t\in prime}u(\left \lfloor \frac{T}{t} \right \rfloor))

此时,如果是单组查询,可以直接做,时间复杂度为 O(n),若为多组数据的话,此时需要加一个整除分块,因此要预处理所有 T=d*p 对应的 \sum_{p|T}u(\left \lfloor \frac{T}{p} \right \rfloor) 的值,即设: F(n)=\sum_{d|n}u (\frac{n}{d}),sum(x) 是 F(x) 的前缀和

源代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL quickModPow(LL a,LL b,LL mod){ LL res=1; a=a%mod; while(b){if(b&1)res=(a*res)%mod; a=(a*a)%mod; b>>=1;} return res; }
LL getInv(LL a,LL mod){ return quickModPow(a,mod-2,mod); } // (a/b)%MOD=(a%MOD * getInv(b)%MOD)%MOD
const double EPS = 1E-10;
const int MOD = 1E9+7;
const int N = 10000000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;
int mu[N];
int prime[N],cnt;
bool bprime[N];
int F[N];
LL sum[N];

void getMu(int n){//线性筛求莫比乌斯函数

    cnt=0;
    mu[1]=1;//根据定义,μ(1)=1
    memset(bprime,false,sizeof(bprime));

    for(int i=2;i<=n;i++){//求2~N-1的莫比乌斯函数
        if(!bprime[i]){
            prime[++cnt]=i;//存储质数
            mu[i]=-1;//i为质数时,μ(1)=-1
        }
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++){//枚举i之前的素数个数
            bprime[i*prime[j]]=true;//不是质数
            if(i%prime[j])//i不是prime[j]的整数倍时,i*prime[j]就不会包含相同质因子
                mu[i*prime[j]]=-mu[i];//mu[k]=mu[i]*mu[prime[j]],因为prime[j]是质数,mu值为-1
            else{
                mu[i*prime[j]]=0;
                break;//留到后面再筛
            }
        }
    }

    for(int j=1;j<=cnt;j++)
        for(int i=1;i*prime[j]<=n;i++)
            F[i*prime[j]]+=mu[i];
    for(int i=1;i<=n;i++)
        sum[i]=sum[i-1]+(LL)F[i];
}

int main() {
    getMu(10000000);

    int t;
    scanf("%d",&t);
    while(t--){
        int n,m;
        scanf("%d%d",&n,&m);

        int minn=min(n,m);
        LL res=0;
        for(int left=1,right;left<=minn;left=right+1){//整除分块
            right=min(n/(n/left),m/(m/left));
            res+=1ll*(n/left)*(m/left)*(sum[right]-sum[left-1]);
        }
        printf("%lld\n",res);
    }
    return 0;
}

 

<think>好的,我现在需要帮助用户配置或使用GCD-DDPM环境。首先,我得先了解GCD-DDPM是什么。根据用户提供的引用[3],DDPM是去噪扩散概率模型,包括加噪和去噪过程。GCD-DDPM可能是某种结合了分类任务(比如广义类别发现,GCD)的DDPM变体。不过用户提供的引用中没有直接提到GCD-DDPM,所以可能需要结合一般DDPM的配置步骤和用户提到的引用内容来推断。 接下来,用户需要配置教程。通常,配置深度学习模型环境需要以下步骤:安装Python、PyTorch、依赖库,克隆代码库,准备数据集,调整超参数,进行训练或推理。根据引用[3],DDPM涉及加噪和去噪过程,可能需要特定的扩散模型库,如denoising-diffusion-pytorch。 用户提供的引用[1]是关于makefile的,可能与编译有关,但可能不直接相关;引用[2]提到Java的Runtime类,可能也不太相关。因此,主要关注引用[3]中的DDPM流程。 可能的步骤包括: 1. 安装Python和PyTorch。 2. 安装扩散模型相关的库。 3. 获取GCD-DDPM的代码(GitHub仓库?)。 4. 安装依赖项(requirements.txt)。 5. 准备数据集,可能需要在配置文件中指定路径。 6. 调整超参数,如训练轮数、噪声步数等。 7. 运行训练脚本。 需要注意,如果用户的环境有GPU,需要安装CUDA版本的PyTorch。另外,数据集可能需要特定的格式,用户需要按照文档准备。可能还需要注意文件路径的设置,避免错误。 需要检查是否有官方文档或GitHub仓库提供具体的配置说明。假设用户没有提供具体的代码库,可能需要给出通用的步骤,并建议用户参考具体项目的README。 可能的问题:用户可能遇到依赖冲突、CUDA版本不匹配、数据集路径错误等问题。应在回答中提醒常见问题及解决方法,例如创建虚拟环境,检查CUDA版本等。 总结回答结构: 1. 环境准备:Python、PyTorch、CUDA。 2. 获取代码和依赖。 3. 数据集配置。 4. 参数调整。 5. 运行示例。 6. 常见问题。 需要确保所有命令正确,比如pip安装正确的包。引用[3]提到的加噪和去噪过程可能在代码中有具体的实现,需指导用户查看相关部分的代码或配置文件。</think>### GCD-DDPM 环境配置与使用指南 GCD-DDPM(广义类别发现的去噪扩散概率模型)结合了扩散模型和分类任务,其配置步骤如下: --- #### **1. 环境准备** - **Python 环境**:推荐使用 Python 3.8+,并通过虚拟环境隔离依赖: ```bash conda create -n gcd_ddpm python=3.8 conda activate gcd_ddpm ``` - **PyTorch 安装**:根据 CUDA 版本安装对应 PyTorch(需 GPU 支持)[^3]: ```bash # CUDA 11.3 示例 pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 ``` - **依赖库安装**: ```bash pip install denoising-diffusion-pytorch numpy tqdm matplotlib ``` --- #### **2. 获取代码与依赖** - 克隆 GCD-DDPM 代码库(假设仓库地址为 `github.com/example/gcd-ddpm`): ```bash git clone https://github.com/example/gcd-ddpm.git cd gcd-ddpm pip install -r requirements.txt ``` --- #### **3. 数据集配置** - **数据集路径**:在配置文件中指定数据集路径(如 `configs/dataset.yaml`): ```yaml data_root: ./datasets/cifar10 batch_size: 64 ``` - **支持的数据格式**:确保数据集为图像文件夹结构,例如: ``` datasets/cifar10/train/class1/img1.png datasets/cifar10/test/class2/img2.png ``` --- #### **4. 调整超参数** 修改训练脚本或配置文件(如 `configs/train.yaml`): ```yaml num_timesteps: 1000 # 加噪/去噪步数 learning_rate: 1e-4 epochs: 100 ``` --- #### **5. 运行训练与推理** - **训练模型**: ```bash python train.py --config configs/train.yaml ``` - **生成图像**: ```bash python generate.py --checkpoint ./checkpoints/model.pth --num_samples 10 ``` --- #### **6. 常见问题** 1. **CUDA 版本不匹配** 检查 PyTorch 和 CUDA 版本是否兼容,使用 `nvidia-smi` 查看 CUDA 版本。 2. **依赖冲突** 建议使用虚拟环境,或通过 `pip freeze > requirements.txt` 导出依赖。 3. **数据集加载失败** 确保 `data_root` 路径正确,且图像格式为 PNG/JPG。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值