题目描述
回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。
在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。
猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?
输入输出格式
输入格式:
有多组输入数据,每组数据:
第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。
对于30%的数据,有n,m≤100
对于60%的数据,有n,m≤1000
对于100%的数据,有n,m≤2500
输出格式:
只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。
输入输出样例
输入样例#1:
4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0输出样例#1:
3
源代码
#include<iostream>
#include<cstdio>
using namespace std;
int max(int x,int y,int z)//求最大值
{
int temp=x;
if(temp<y) temp=y;
if(temp<z) temp=z;
return temp;
}
int fish[2510][2510];
int dp1[2510][2510]={0},dp2[2510][2510]={0};
int main()
{
int n,m;
int i,j,k;
int ans=0;
cin>>n>>m;//水池长、宽
for(i=1;i<=n;i++)//有无鱼
for(j=1;j<=m;j++)
scanf("%d",&fish[i][j]);//数据很多时,cin速度不如scanf
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
if(fish[i][j]!=0)//当前格有鱼
{
/*统计左对角线*/
dp1[i][j]=dp1[i-1][j-1]+1;
for(k=1;k<dp1[i][j];k++)//遍历
{
if( (fish[i-k][j]!=0) || (fish[i][j-k]!=0) )//如果子矩阵有鱼,终止遍历
{
dp1[i][j]=k;
break;
}
}
/*统计右对角线*/
dp2[i][j]=dp2[i-1][j+1]+1;
for(k=1;k<dp2[i][j];k++)//遍历
{
if( (fish[i-k][j]) || (fish[i][j+k]) )//如果子矩阵有鱼,终止遍历
{
dp2[i][j]=k;
break;
}
}
}
ans=max(ans,dp1[i][j],dp2[i][j]);//记录最大值
}
cout<<ans<<endl;
return 0;
}