能量项链(NOIP-2006 提高组)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011815404/article/details/82320603

Problem Description

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

Input 

有多组测试数据。

对于每组测试数据,输入的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

处理到文件结束。

Output

对于每组测试数据,输出只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。

Sample Input

4
2 3 5 10

Sample Output

710

思路:环形 DP,考虑将珠子剪开,将原有的序列变为两倍,例如:1,2,3,4 可以展成 1,2,3,4,3,2,1,用 dp[i][j] 表示合并区间 i 到 j 的最大能量,第一重循环表示珠子分组的终点,第二重循环的表示从珠子分组的起点 ,第三重循环表示截断的点

注意,有多组数据

Source Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 201
#define MOD 10007
#define E 1e-6
#define LL long long
using namespace std;
LL a[N];
LL dp[N][N];
int main()
{
    int n;
    while(cin>>n)
    {
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
            a[i+n]=a[i];
        }

        memset(dp,0,sizeof(dp));
        for(int len=2;len<=n;len++)
        {
            for(int i=1;i+len-1<=2*n;i++)
            {
                int j=len+i-1;
                for(int k=i;k<j;k++)
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1]);
            }
        }

        LL maxx=0;
        for(int i=1;i<=n;i++)
            maxx=max(maxx,dp[i][i+n-1]);

        cout<<maxx<<endl;
    }
    return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页