题目
X轴上有N条线段,每条线段有1个起点S和终点E。最多能够选出多少条互不重叠的线段。(注:起点或终点重叠,不算重叠)。
例如:[1 5][2 3][3 6],可以选[2 3][3 6],这2条线段互不重叠。输入
第1行:1个数N,线段的数量(2 <= N <= 10000)
第2 - N + 1行:每行2个数,线段的起点和终点(-10^9 <= S,E <= 10^9)输出
输出最多可以选择的线段数量。
输入样例
3
1 5
2 3
3 6输出样例
2
思路:
要选择最多的线段数量,那么按照线段的起点、终点进行排序后,从头到尾进行选择即可
由于线段的起点和终点可能是负数,那么根据数据范围将输入的每条线段整体右移 1E9
源程序
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
const int MOD = 1E9+7;
const int N = 50000+5;
const int dx[] = {-1,1,0,0};
const int dy[] = {0,0,-1,1};
using namespace std;
struct Node{
LL start;
LL endd;
}a[N];
bool cmp(Node a,Node b){
if(a.endd==b.endd)
return a.start<b.start;
return a.endd<b.endd;
}
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;++i){
scanf("%lld%lld",&a[i].start,&a[i].endd);
a[i].start+=1E9;
a[i].endd+=1E9;
}
sort(a,a+n,cmp);
LL k=a[0].endd;
int res=1;
for(int i=1;i<n;i++){
if(a[i].start>=k){
res++;
k=a[i].endd;
}
}
printf("%d\n",res);
return 0;
}