Number Challenge(CF-235E)

Problem Description

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:

Find the sum modulo 1073741824 (230).

Input

The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 2000).

Output

Print a single integer — the required sum modulo 1073741824 (230).

Examples

Input

2 2 2

Output

20

Input

4 4 4

Output

328

Input

10 10 10

Output

11536

Note

For the first example.

  • d(1·1·1) = d(1) = 1;
  • d(1·1·2) = d(2) = 2;
  • d(1·2·1) = d(2) = 2;
  • d(1·2·2) = d(4) = 3;
  • d(2·1·1) = d(2) = 2;
  • d(2·1·2) = d(4) = 3;
  • d(2·2·1) = d(4) = 3;
  • d(2·2·2) = d(8) = 4.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.

题意:定义 d(n) 为 n 的除数,现在给出 a、b、c,求 

思路:莫比乌斯反演

约数个数函数有一个结论:d(n*m)=\sum_{i|n}\sum_{j|m}\left \lfloor gcd(i,j)=1 \right \rfloor

那么推广到三个数,有:d(nmt)=\sum_{i|n}\sum_{j|m}\sum_{k|t}[gcd(i,j)=1][gcd(j,k)=1][gcd(i,k)=1]

那么,将 d(nmt) 代入  有:d(abc)=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\sum_{x|a}\sum_{y|b}\sum_{z|c}[gcd(x,y)=gcd(y,z)=gcd(x,z)=1]

化简得:d(abc)=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor[gcd(i,j)=gcd(i,k)=gcd(j,k)=1]

利用反演公式:[n=1]=\sum_{d|n}u(d)

有:d(abc)=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor \sum_{d|(i,j)}u(d)[gcd(j,k)=gcd(i,k)=1]

化简得:d(abc)=\sum_{i=1}^c \left \lfloor \frac{c}{k} \right \rfloor \sum_{d=1}^n u(d) \sum_{i=1}^a \left \lfloor d[i]\frac{a}{i}[gcd(i,k)=1] \right \rfloor\sum_{j=1}^b d[i] \left \lfloor \frac{b}{j} \right \rfloor [ gcd(j,k)=1]

令 i=d[i],j=d[j],有:d(abc)=\sum_{i=1}^c \left \lfloor \frac{c}{k} \right \rfloor \sum_{d=1}^n u(d) \sum_{i=1}^{\frac{a}{d}} \left \lfloor \frac{a}{d[i]}[gcd(i,k)=1] \right \rfloor\sum_{j=1}^{\frac{b}{n}} \left \lfloor \frac{b}{d[j]} \right \rfloor [ gcd(j,k)=1]

设 f(n,m)=\sum_{i=1}^n \left \lfloor \frac{n}{i} \right \rfloor[gcd(i,m)=1]

则有:d(abc)=\sum_{k=1}^c \left \lfloor \frac{c}{k} \right \rfloor\sum_{d=1}^au(d)f(\frac{a}{d},k)f(\frac{b}{d},k)

求 f(n) 的时间复杂度为 O(n),那么整体复杂度为 O(n*n*logn),需要优化常数,由于 a、b、c 的顺序无影响,因此可选两个小的进行枚举,将 GCD 预处理进行记忆化

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const int MOD = 1073741824;
const int N = 2000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;

int mu[N];
int prime[N];
bool bprime[N];
void getMu(int n){//线性筛求莫比乌斯函数

    mu[1]=1;//根据定义,μ(1)=1

    int cnt=0;
    memset(bprime,false,sizeof(bprime));
    for(int i=2;i<=n;i++){//求2~n的莫比乌斯函数
        if(!bprime[i]){
            prime[cnt++]=i;//存储质数
            mu[i]=-1;//i为质数时,μ(1)=-1
        }
        for(int j=0;j<cnt;j++){//枚举i之前的素数个数
            int k=i*prime[j];//素数的乘积
            if(k>n)//剪枝
                break;
            bprime[k]=true;//不是质数
            if(i%prime[j])//i不是prime[j]的整数倍时,i*prime[j]就不会包含相同质因子
                mu[k]=-mu[i];//mu[k]=mu[i]*mu[prime[j]],因为prime[j]是质数,mu值为-1
            else{
                mu[k]=0;
                break;//留到后面再筛
            }
        }
    }
}
int a,b,c;
int table[N][N];
void minSort(){
    if(a>b)
        swap(a,b);
    if(b>c)
        swap(b,c);
    if(a>b)
        swap(a,b);
}
int GCD(int x,int y){
    return y?GCD(y,x%y):x;
}
int F(int n,int m){
    int res=0;
    for(int i=1;i<=n;i++)
        if(table[i][m]==1)
            res+=n/i;
    return res;
}
int main(){
    getMu(2000);
    scanf("%d%d%d",&a,&b,&c);

    minSort();//使得abc变为升序

    for(int i=1;i<=c;i++){//选最大c的打表
        for(int j=i;j<=c;j++){
            table[i][j]=GCD(i,j);
            table[j][i]=GCD(i,j);
        }
    }

    int res=0;
    for(int i=1;i<=a;i++)
        for(int j=1;j<=min(b,c);j++)
            if(table[i][j]==1)
                res+=mu[j]*(a/i)*F(b/j,i)*F(c/j,i);
    res=(res%MOD+MOD)%MOD;
    printf("%d\n",res);

    return 0;
}

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值