题目描述
小 N 最近在研究 NP 完全问题,小 O 看小 N 研究得热火朝天,便给他出了一道这样的题目:
有 n 个球,用整数 1 到 n 编号。还有 m 个筐子,用整数 1 到 m 编号。每个筐子最多能装 3 个球。
每个球只能放进特定的筐子中。 具体有 e 个条件,第 i 个条件用两个整数 vi 和 ui 描述,表示编号为 vi 的球可以放进编号为 ui 的筐子中。
每个球都必须放进一个筐子中。如果一个筐子内有不超过 1 个球,那么我们称这样的筐子为半空的。
求半空的筐子最多有多少个,以及在最优方案中, 每个球分别放在哪个筐子中。
小 N 看到题目后瞬间没了思路,站在旁边看热闹的小 I 嘿嘿一笑:“水题!” 然后三言两语道出了一个多项式算法。
小 N 瞬间就惊呆了,三秒钟后他回过神来一拍桌子:“不对!这个问题显然是 NP 完全问题,你算法肯定有错!”
小 I 浅笑:“所以,等我领图灵奖吧!”
小 O 只会出题不会做题,所以找到了你——请你对这个问题进行探究,并写一个程序解决此题。
输入输出格式
输入格式:
输入文件 npc.in 第一行包含 1 个正整数 T, 表示有 T 组数据。
对于每组数据,第一行包含 3 个正整数 nn,m,e, 表示球的个数,筐子的个数和条件的个数。
接下来 e 行,每行包含 2 个整数 vi,ui,表示编号为 vi 的球可以放进编号为 ui 的筐子。
输出格式:
输出文件为 npc.out。
对于每组数据,先输出一行,包含一个整数,表示半空的筐子最多有多少个。
然后再输出一行,包含 n 个整数 p1,p2,...,pn,相邻整数之间用空格隔开,表示一种最优解。其中 pi 表示编号为 i 的球放进了编号为 pi 的筐子。 如果有多种最优解,可以输出其中任何一种。
输入输出样例
输入样例#1:
1
4 3 6
1 1
2 1
2 2
3 2
3 3
4 3输出样例#1:
2
1 2 3 3说明
对于所有数据,T≤5,1≤n≤3m。 保证 1≤vi≤n,1≤ui≤m,且不会出现重复的条件。
保证至少有一种合法方案,使得每个球都放进了筐子,且每个筐子内球的个数不超过 3。
各测试点满足以下约定:
思路:
简单来说,就是有 n 个球,m 个筐,一个筐最多装三个球,有 e 个条件表示哪个球能装哪个筐里,要求每个球必须进一个筐,问不超过一个球的筐最多有几个
由于一个筐最多装三个球,因此将每个筐拆成三个点,代表三个空位,然后对每个球可以放入的筐添加三条对应边,再将每个筐的三个点间互相连边,跑带花树算法求最大匹配即可
源代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const int MOD = 1073741824;
const int N = 2000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;
struct Edge {
int to,next;
} edge[N*N*2];
int head[N],tot;
int n;//n个点
int father[N],pre[N];//father记录一个点属于哪个一个点为根的花
int Q[N*N*2],first,tail;//bfs队列
int match[N];//匹配
bool odd[N],vis[N];//odd记录一个点为奇点/偶点,1为奇,0为偶
int timeBlock;//LCA时间戳
int top[N],rinedge[N];
void addEdge(int u,int v) {//添边
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int Find(int x){//并查集寻找根节点
if(father[x]!=x)
return father[x]=Find(father[x]);
return x;
}
int lca(int x, int y){//求解最近公共祖先
timeBlock++;
while(x){
rinedge[x]=timeBlock;
x=Find(top[x]);
}
x=y;
while(rinedge[x]!=timeBlock)
x=Find(top[x]);
return x;
}
void blossom(int x, int y, int k) {//将奇环缩成一个点并将原来是奇点的点变为偶点并加入队列
while(Find(x)!=Find(k)){
pre[x]=y;
y=match[x];
odd[y]=false;
Q[tail++]=y;
father[Find(x)]=k;
father[Find(y)]=k;
x=pre[y];
}
}
bool bfs(int s) {
memset(top,0,sizeof(top));
memset(pre,0,sizeof(pre));
memset(odd,false,sizeof(odd));
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;i++)
father[i]=i;
vis[s]=true;
first=tail=0;
Q[tail++]=s;
while(first!=tail){
int now=Q[first++];
for(int i=head[now];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(!vis[to]){
top[to]=now;
pre[to]=now;
odd[to]=true;
vis[to]=true;
if(!match[to]){
int j=to;
while(j){
int x=pre[j];
int y=match[x];
match[j]=x;
match[x]=j;
j=y;
}
return true;
}
vis[match[to]]=true;
top[match[to]]=to;
Q[tail++]=match[to];
}
else if(Find(now)!=Find(to) && odd[to]==false) {
int k=lca(now,to);
blossom(now,to,k);
blossom(to,now,k);
}
}
}
return false;
}
int main() {
int t;
scanf("%d",&t);
while(t--){
memset(head,-1,sizeof(head));
memset(match,0,sizeof(match));
tot=0;
int p,m,e;
scanf("%d",&p);
scanf("%d",&m);
scanf("%d",&e);
for(int i=1;i<=e;i++){
int x,y;
scanf("%d%d",&x,&y);
y=p+(y-1)*3;
addEdge(x,y+1); addEdge(y+1,x);
addEdge(x,y+2); addEdge(y+2,x);
addEdge(x,y+3); addEdge(y+3,x);
}
for(int i=1;i<=m;i++){
int point=p+(i-1)*3;
addEdge(point+1,point+2);
addEdge(point+2,point+1);
}
n=p+m*3;//总点数
int res=0;
for(int i=1;i<=n;i++)
if(!match[i])
res+=bfs(i);
res-=p;
printf("%d\n",res);
for(int i=1;i<=p;i++)
printf("%d ",(match[i]-p-1)/3+1);
printf("\n");
}
return 0;
}