Problem Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1Sample Output
8
思路:最小生成树计数模版题
Source Program
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const int MOD = 31011;
const int N = 1000+5;
const int dx[] = {0,0,-1,1,-1,-1,1,1};
const int dy[] = {-1,1,0,0,-1,1,-1,1};
using namespace std;
struct Edge {
int x,y;
int dis;
bool operator < (const Edge &rhs) const {
return dis<rhs.dis;
}
} edge[N],tr[N];
int n,m;
int father[N];
int G[N][N];
int tot,bel[N],val[N];
int Find(int x) {
if(father[x]!=x)
return father[x]=Find(father[x]);
return x;
}
int Gauss(int n) {
int res=1;
for(int i=1; i<=n; i++) {
for(int k=i+1; k<=n; k++) {
while(G[k][i]) {
int d=G[i][i]/G[k][i];
for(int j=i; j<=n; j++)
G[i][j]=(G[i][j]-1LL*d*G[k][j]%MOD+MOD)%MOD;
swap(G[i],G[k]);
res=-res;
}
}
res=1LL*res*G[i][i]%MOD,res=(res+MOD)%MOD;
}
return res;
}
int Kruskal() {
sort(edge+1,edge+m+1);
for(int i=1; i<=n; i++)
father[i]=i;
int cnt=0;
for(int i=1; i<=m; i++) {
int fu=Find(edge[i].x);
int fv=Find(edge[i].y);
if(fu==fv)
continue;
father[fu]=fv,tr[++cnt]=edge[i];
if(edge[i].dis!=val[tot])
val[++tot]=edge[i].dis;
}
return cnt;
}
void addTreeEdge(int v) {
for(int i=1; i<n&&tr[i].dis!=v; i++){
int x=tr[i].x;
int y=tr[i].y;
father[Find(x)]=Find(y);
}
for(int i=n-1; i&&tr[i].dis!=v; i--){
int x=tr[i].x;
int y=tr[i].y;
father[Find(x)]=Find(y);
}
}
void rebuild(int v) {
memset(G,0,sizeof(G));
for(int i=1; i<=m; i++){
if(edge[i].dis==v){
int x=bel[edge[i].x];
int y=bel[edge[i].y];
G[x][y]--;
G[y][x]--;
G[x][x]++;
G[y][y]++;
}
}
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].dis);
int cnt=Kruskal();
if(cnt!=n-1) {
printf("0\n");
}
else{
int res=1;
for(int i=1; i<=tot; i++) {
for(int i=1; i<=n; i++)
father[i]=i;
addTreeEdge(val[i]);
int blo=0;
for(int i=1; i<=n; i++)
if(Find(i)==i)
bel[i]=++blo;
for(int i=1; i<=n; i++)
bel[i]=bel[Find(i)];
rebuild(val[i]);
res=1LL*res*Gauss(blo-1)%MOD;
}
printf("%d\n",res);
}
return 0;
}