最小生成树计数(HYSBZ-1016)(加强版实现)

Problem Description

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

思路:最小生成树计数模版题

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const int MOD = 31011;
const int N = 1000+5;
const int dx[] = {0,0,-1,1,-1,-1,1,1};
const int dy[] = {-1,1,0,0,-1,1,-1,1};
using namespace std;


struct Edge {
    int x,y;
    int dis;
    bool operator < (const Edge &rhs) const {
        return dis<rhs.dis;
    }
} edge[N],tr[N];
int n,m;
int father[N];
int G[N][N];
int tot,bel[N],val[N];
int Find(int x) {
    if(father[x]!=x)
        return father[x]=Find(father[x]);
    return x;
}
int Gauss(int n) {
    int res=1;
    for(int i=1; i<=n; i++) {
        for(int k=i+1; k<=n; k++) {
            while(G[k][i]) {
                int d=G[i][i]/G[k][i];
                for(int j=i; j<=n; j++)
                    G[i][j]=(G[i][j]-1LL*d*G[k][j]%MOD+MOD)%MOD;
                swap(G[i],G[k]);
                res=-res;
            }
        }
        res=1LL*res*G[i][i]%MOD,res=(res+MOD)%MOD;
    }
    return res;
}
int Kruskal() {
    sort(edge+1,edge+m+1);
    for(int i=1; i<=n; i++)
        father[i]=i;
    int cnt=0;
    for(int i=1; i<=m; i++) {
        int fu=Find(edge[i].x);
        int fv=Find(edge[i].y);
        if(fu==fv)
            continue;
        father[fu]=fv,tr[++cnt]=edge[i];
        if(edge[i].dis!=val[tot])
            val[++tot]=edge[i].dis;
    }
    return cnt;
}
void addTreeEdge(int v) {
    for(int i=1; i<n&&tr[i].dis!=v; i++){
        int x=tr[i].x;
        int y=tr[i].y;
        father[Find(x)]=Find(y);
    }
    for(int i=n-1; i&&tr[i].dis!=v; i--){
        int x=tr[i].x;
        int y=tr[i].y;
        father[Find(x)]=Find(y);
    }
}
void rebuild(int v) {
    memset(G,0,sizeof(G));
    for(int i=1; i<=m; i++){
        if(edge[i].dis==v){
            int x=bel[edge[i].x];
            int y=bel[edge[i].y];
            G[x][y]--;
            G[y][x]--;
            G[x][x]++;
            G[y][y]++;
        }
    }
}
int main() {
    scanf("%d%d",&n,&m);
    for(int i=1; i<=m; i++)
        scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].dis);

    int cnt=Kruskal();
    if(cnt!=n-1) {
        printf("0\n");
    }
    else{
        int res=1;
        for(int i=1; i<=tot; i++) {
            for(int i=1; i<=n; i++)
                father[i]=i;

            addTreeEdge(val[i]);

            int blo=0;
            for(int i=1; i<=n; i++)
                if(Find(i)==i)
                    bel[i]=++blo;
            for(int i=1; i<=n; i++)
                bel[i]=bel[Find(i)];

            rebuild(val[i]);
            res=1LL*res*Gauss(blo-1)%MOD;
        }
        printf("%d\n",res);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值