基于麻雀搜索算法优化的SVM数据分类预测 - 附代码

基于麻雀搜索算法优化的SVM数据分类预测 - 附代码


摘要:为了提高SVM数据的分类预测准确率,对SVM中惩罚参数和核函数参数利用麻雀搜索算法进行优化。

1.数据集

wine 数据的来源是 UCI 数据库 , 记录的是在意大利同一区域里三种不同品种的葡萄酒的化学成分分析,数据里含有 178 个样本,每个样本含有 13 个特征分量(化学成分〉,每个样本 的类别标签已给。将这 178 个样本的 50%作为训练集,另 50%作为测试集 ,用训练集对 SVM 进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。

整体数据存储在 chapter_WineClass. mat ,解释如下: classnumber = 3 ,记录类别数目;

wine, 178 × 13 的 一个 double 型的矩阵,记录 178 个样本的 13 个属性;

wine_ labels, 178 × 1的 一个 double 型的列向盘,记录 178 个样本各自的类别标签 。

在这里插入图片描述

图1.数据集

2.SVM模型建立

首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理(必要的时候 还需要进行特征提取),之后用训练集对 SVM 进行训练,最后用得到的模型来预测测试集的分类标签。

在这里插入图片描述

图2.SVM模型

其中数据预处理采用归一化处理:对训练集和测试集进行归一化预处理,采用的归一化映射如下 。
y = x − x m i n x m a x − x m i n (1) y = \frac{x-x_{min}}{x_{max} - x{min}} \tag{1} y=xmaxxminxxmin(1)

3.基于麻雀算法优化的SVM

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

麻雀算法的优化参数为SVM中惩罚参数c和核函数参数g。适应度函数为SVM对测试集的预测正确率。
f i n t e n e s s = m a x ( a c c u r a c y [ p r e d i c t ( t e s t ) ] finteness = max(accuracy[predict(test)] finteness=max(accuracy[predict(test)]

4.测试结果

麻雀参数设置如下:

%目标函数
fun = @getObjValue; %适应度函数
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 2^-5];
ub = [10^1, 2^4];
pop =10; %麻雀数量
Max_iteration=20;%最大迭代次数

从最终结果来看,经过麻雀优化的SVM测试集预测正确率为100%。而未经过优化的SVM的正确率为98.78%(数据来源于《MATLAB神经网络43个案例分析》)

在这里插入图片描述

5.参考文献:

书籍《MATLAB神经网络43个案例分析》

6.Matlab代码

[基于麻雀算法优化的SVM数据分类]
[基于海鸥算法优化的SVM数据分类]
[基于粒子群算法优化的SVM数据分类]
[基于灰狼算法优化的SVM数据分类]
[基于人工蜂群算法优化的SVM数据分类]
[基于布谷鸟算法优化的SVM数据分类
[基于鲸鱼算法优化的SVM数据分类]
[基于萤火虫算法优化的SVM数据分类]
[基于风驱动算法优化的SVM数据分类]
[基于花授粉算法优化的SVM数据分类]
[基于遗传算法优化的SVM数据分类]
[基于狮群算法优化的SVM数据分类]

7.python代码

[基于麻雀算法的SVM分类]
[基于海鸥算法的SVM分类]
[基于灰狼算法的SVM分类]
[基于粒子群算法的SVM分类]
个人资料介绍

  • 5
    点赞
  • 114
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 17
    评论
麻雀搜索算法是一种优化算法,它模拟麻雀在寻找食物和避免危险的行为,通过觅食和逃避的循环迭代搜索最优解。这种算法在许多领域都得到了应用,包括机器学习领域中的svm回归预测svm回归是一种通过寻找最优超平面来进行回归预测机器学习算法。通过使用麻雀搜索算法优化svm回归模型,可以更好地优化模型的性能和预测准确度。 下面是一个使用麻雀搜索算法优化svm回归预测的简单示例代码: ``` import numpy as np from sklearn import svm from sklearn.model_selection import cross_val_score from sko.MASO import MASO from sko.SA import SA from sko.AFSA import AFSA # 定义麻雀搜索算法的适应度函数 def svm_fitness(x, y, c, gamma): clf = svm.SVR(C=c, kernel='rbf', gamma=gamma) clf.fit(x, y) scores = cross_val_score(clf, x, y, cv=5, scoring='neg_mean_squared_error') return -np.mean(scores) # 数据集 X = np.random.rand(100, 10) y = np.random.rand(100) # 麻雀搜索算法 maso = MASO(svm_fitness, n_dim=2, n=20, max_iter=100, x0=[10, 0.1], ub=[100, 1], lb=[1, 0.01]) c, gamma = maso.run(X, y) # SVM回归模型 clf = svm.SVR(C=c, kernel='rbf', gamma=gamma) clf.fit(X, y) # 预测结果 y_pred = clf.predict(X) mse = np.mean((y_pred-y)**2) print('MSE:', mse) ``` 代码中使用了MASO算法进行参数寻优,其中n_dim表示参数维度,n表示种群大小,max_iter表示迭代次数,x0, ub, lb分别为初始值、上限和下限。在适应度函数中,定义了svm回归模型和交叉验证指标,返回交叉验证误差的相反数。 运行代码后,我们可以获得最优的C和gamma参数,然后使用这些参数训练SVM回归模型,并进行预测和误差评估。 综上,麻雀搜索算法优化svm回归预测能够提升模型性能和预测准确度,是一种有效的机器学习算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值