基于樽海鞘群算法优化的Kmeans图像分割

智能优化算法应用:基于樽海鞘群优化K-means图像分割算法 - 附代码


摘要:基于樽海鞘群优化K-means图像分割算法。

1.K-means原理

K-Means算法是一种无监督分类算法,假设有无标签数据集:
X = [ x 1 , x 2 , . . . , x n ] (1) X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成 k k k C = C 1 , C 2 , . . . , C k C = C_1,C2,...,C_k C=C1,C2,...,Ck,最小化损失函数为:
E = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 (2) E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1kxCi∣∣xui2(2)
其中 u i u_i ui为簇的中心点:
u i = 1 ∣ C i ∣ ∑ x ∈ C i x (3) u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=Ci1xCix(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:

1.在样本中随机选取 k k k个样本点充当各个簇的中心点 { u 1 , u 2 , . . . , u k } \{u_1,u_2,...,u_k\} {u1,u2,...,uk}

2.计算所有样本点与各个簇中心之间的距离 d i s t ( x i , u j ) dist(x_i,u_j) dist(xi,uj),然后把样本点划入最近的簇中 x i ∈ u n e a r e s t x_i \in u_{nearest} xiunearest

3.根据簇中已有的样本点,重新计算簇中心
u i = 1 ∣ C i ∣ ∑ x ∈ C i x u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=Ci1xCix

4.重复2、3

K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用樽海鞘群优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。

2.基于樽海鞘群算法的Kmeans聚类

樽海鞘群算法原理请参考:https://blog.csdn.net/u011835903/article/details/107767869

适应度函数:利用樽海鞘群算法改进kmeans时,以聚类中心作为樽海鞘群算法的优化变量,适应度函数设计如下:
f i t n e s s = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1kxCi∣∣xui2
该适应度函数与kmeans的最小损失函数一致。

算法的具体流程如下:

1.随机抽样待分类数据点,作为樽海鞘群聚类候选点。

2.利用樽海鞘群算法搜索最小损失的的聚类点。

3.将这些聚类点作为kmeans算法的初始聚类点。

4.利用kmeans获得最终的聚类点。

3.算法实验结果

将基于樽海鞘群优化的Kmeans算法用于图像的分割实验。对于图像,选取50%的像素点作为聚类候选点。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.Matlab代码

个人资料介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值