【Tableau系列第(6)篇】使用Tableau Prep进行数据清理、整合(一)

使用Tableau Prep的整体过程详见:【Tableau系列第(5)篇】用Tableau Prep整理数据全流程初体验

本篇一步一步跟我一起来熟悉更多的Tableau Prep数据清理、整合的操作

示例excel数据源链接: https://pan.baidu.com/s/17nx3_LPe30oK1l1JsC6Kdw?pwd=AQWF 提取码: AQWF

合并多个表(比如不同时间段的数据)

新建连接-文本文件(.csv文件),orders_south_2015,2016,2017,2018在同一个文件夹下,所以,点击“表”,可以看到这四个文件,选择合并多个表,点应用;

添加更多个输入

Orders_East.xlsx

Orders_West.csv

Orders_Central.csv

清理订单数据

创建计算字段

点击Orders_Central,这个 数据集中没有“Region”字段,而其他数据集中有,所以,要增加这一字段,方面后续分析;

新建标志性字段

字段值输入:Region,字段值:"Central",然后保存;

合并字段

Orders_Central这个数据集中,订单年份、月、日是3个单独的字段,需要把它们合并成一个字段Order Date,格式为"MM/DD/YYYY",赋值:MAKEDATE([Order Year],[Order Month],[Order Day])

移除字段

需要移除订单年份、月、日是3个单独的字段,在搜索框中输入Order,按住Ctrl多选Order Year,Order Month,Order Day,右键——移除;

类似的,Orders_Central这个数据集中,发货年份、月、日也是3个单独的字段,需要把它们合并成一个字段Ship Date,格式为"MM/DD/YYYY",赋值:MAKEDATE([Ship Year],[Ship Month],[Ship Day])

修改字段类型

Orders_Central这个数据集中,系统给Discounts折扣字段分配的数据类型有问题,它应该是数字类型,但是系统分配的是字符串类型,这是为什么呢,原来,无折扣的情况,字段值是“None”;

直接双击None,把None改为0,按回车键完成;

再去修改Discounts的数据类型,如下图,左键单击“Abc”,选择“数字(小数)”;

在金额字段里移除货币符号

给Orders_East新增一个清理步骤,查看字段,会发现销售额“Sales”字段值中包含了货币符号,Tableau Prep将这个字段解读为了字符串类型;

下面,来快速移除所有字段值中的货币符号,点“…”-清理-移除字母:

然后将Sales的数据类型修改为数字。

添加字段值-映射原始字段值

给Orders_West新增一个清理步骤,查看字段会发现State字段值使用了缩写,如果要和其他文件合并,需要修改为完整的拼写;

点“…”-将值分组-手动选择;

双击AZ,修改为Arizona,这样就把AZ映射到了新值Arizona;

重复这个步骤,完成11个州的修改,然后点击完成;

合并数据

将“重命名State值”拖动到“更改数据类型”步骤(放在“并集”上)

将“清理日期和修改字段”拖到上面创建的并集步骤(放在“添加”上);

同样的,将orders_south输入步骤 拖动到并集步骤(放在“添加”上);

Tableau Prep会自动匹配具有相同名称和类型的字段;

还会发现,新增了一个Table Names(表名称)字段,表示该行数据来自于哪个表;

检查不匹配的字段Discount和Discounts,原来是因为字段名不同,那就可以把它们合并;

选择Discount字段,拖动到Discounts字段上进行合并;

类似的,将Product和Product Name合并;

完成了数据合并,将步骤“并集1”重命名为“所有订单”。

拆分字段值

完成了订单清理和合并,接下来处理退货数据,发现数据有一点杂乱;

新建连接,选择“Microsoft Excel”,选择return_reasons_new.xlsx

新增一个清理步骤,观察Notes(注释)的取值,发现里面包含了审批者,可以把这个信息单独拎出来,放在另一个字段中更好的利用;

首先移除额外的空格:

然后拆分注释和审批者,由于这个数据有明显的分隔符,所以可以选“自动拆分”,当然也可以手动拆分;

拆分后,双击字段给字段重命名为Return Notes和Approver(审批者)

移除原始的Notes字段:

观察到审批人取值里有点问题,相同的人名好像写法不一样:

发现Tableau Prep把相同人名的不同写法分为了一组,很不错,检查一下,完成;

联接数据

将退货数据和订单数据联结起来,想要联结两个表,它们需要有共同的字段,比如Order ID和Product ID,将退货清理步骤拖动到所有订单,放在“联接”上;

添加“联接子句”

内部联接”,仅包括两个文件中都存在的值,没有匹配退货的订单数据被排除;

需要改为“左”联接,数据要包括“所有订单”合并步骤中所有数据、以及“退货订单(清理注释)”中的匹配数据;

清理联接结果

移除多余字段

将字段Order ID-1重命名为Order ID;

添加一个值为"Yes"和"No"的字段来表示是否已退货;

创建计算字段 Return?

赋值If ISNULL([Return Reason])=FALSE THEN "Yes" ELSE "No" END

可能为了分析,还想要知道下单到发货间隔天数,

看一下订单日期和发货日期,有点问题:

修正一下:

新建字段“Days to Ship”,赋值为:

DATEDIFF('day',[Order Date],[Ship Date]),完成之后:

处理完之后,可以输出数据。

基本操作见:【Tableau系列第(5)篇】用Tableau Prep整理数据全流程初体验

最后,给你一个完整的Tableau Prep帮助文档,更多的操作问题可以根据需要从中查找答案;

链接: 百度网盘 请输入提取码 提取码: AQWF

合并,整形和清理数据使用Tableau Prep进行分析 Tableau Prep更改了组织中传统数据准备的执行方式。通过提供直观,直接的方式来组合,成形和清除数据Tableau Prep使分析人员和业务用户更容易更快地开始分析。 Tableau Prep由两种产品组成:用于构建数据流的Tableau Prep Builder和用于在组织内调度,监视和管理流的Tableau Prep Conductor。 三个协调的视图使您可以查看行级数据,每列的配置文件以及整个数据准备过程。根据手头的任务选择要与之交互的视图。 如果要编辑值,请选择并直接编辑。更改您的联接类型,并立即查看结果。每次执行操作时,即使是数百万行的数据,您都可以立即看到数据更改。通过Tableau Prep Builder,您可以自由地重新排序步骤并进行实验,而不会产生任何后果。 使用智能功能解决常见的数据准备挑战。Tableau Prep Builder使用模糊聚类将重复任务(例如按发音分组)转变为键式操作。 无论是数据库还是电子表格,都可以连接到本地或云中的数据。无需编写代码即可访问,合并和清除不同的数据Tableau Prep Builder会在可能的情况下智能地将操作推送到数据库,让您利用现有的数据库投资来提高流程执行性能。 留在您的分析流程中。使用Tableau Desktop打开输出或通过Tableau Server或Tableau Online与他人共享输出很容易。轻松共享可减少摩擦,并帮助您弥合数据准备和分析之间的鸿沟,以获得更好的业务成果。 使用Tableau Prep Conductor,您可以轻松地在服务器环境中发布和运行流。使用Tableau Server或Tableau Online安全共享您的数据源。创建个环境,组织中的每个人都可以使用准备好的最新数据。 安排您的流量在白天或晚上需要时运行。使您的数据准备过程自动化,以便始终准备好新鲜数据并准备进行分析。 使用当今Tableau Server上可用的相同工具监视流。使用“状态”页面,“管理员视图”和运行历史记录来查看整个服务器上的流的运行状况,以便您可以快速解决任何问题。通过主动警报始终知道您的流量是否健康。
### Tableau Prep 数据分析工具使用教程 #### 功能概述 Tableau Prep款专为简化数据准备过程而设计的强大工具,旨在帮助用户快速有效地完成数据的合并、组织和清理工作。这款工具特别适用于那些希望减少从原始数据到可分析状态之间时间的人士[^1]。 #### 主要用途 - **数据清洗**:通过直观的操作界面轻松去除重复项、修复错误以及标准化字段名称。 - **数据转换**:支持多种类型的转换操作,如日期解析、字符串分割等,使不同源的数据能够统格式以便于后续分析。 - **连接多个数据集**:可以无缝集成来自各种数据库系统的表单,并执行复杂的联接逻辑以创建综合视图。 #### 用户体验改进 自首次发布以来,Tableau不断更新和完善此产品线,在最新版中引入了许多新特性来增强用户体验并提高效率。例如增加了自动填充建议等功能,使得即使是初次使用者也能迅速上手[^2]。 #### 登录与启动应用 对于初次接触Tableau Prep的新用户来说,首先要做的就是安装应用程序并通过有效的账户信息登录系统。旦进入主界面之后就可以开始探索其丰富的特性和选项了[^3]。 #### 实际案例流程介绍 假设现在有个项目需求是要基于销售记录做份详细的市场趋势报告,则可以通过以下几个方面来进行初步的数据准备工作: 1. 导入CSV文件作为初始输入; 2. 利用内置函数修正缺失值或异常情况; 3. 将订单日期按年月重新分类汇总成新的维度列; 4. 添加外部API接口获取天气状况补充影响因素资料; 5. 输出最终整理好的表格供下步建模使用。 以上只是简单的例子说明如何利用Tableau Prep解决实际工作中遇到的问题之[^4]。 ```python import tableau_tools as tt server = 'https://your-server-url' username = "YourUsername" password = "YourPassword" # 创建个新的会话对象用于身份验证 session = tt.TableauAuth(username=username, password=password) # 连接到服务器实例 tab_server = tt.Server(server_url=server) try: tab_server.auth.sign_in(session) except Exception as e: print(f"Error during sign-in process: {str(e)}") finally: # 断开连接前确保已成功登出 if hasattr(tab_server,'auth'): tab_server.auth.sign_out() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值