聚类算法之密度聚类算法DBSCAN

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011955252/article/details/50814737

一:基本概念

1.:对象O的是与O为中心,为半径的空间,参数,是用户指定每个对象的领域半径值。

2.MinPts(领域密度阀值):对象的的对象数量。

3.核心对象:如果对象O的对象数量至少包含MinPts个对象,则该对象是核心对象。

4.直接密度可达:如果对象p在核心对象q的内,则p是从q直接密度可达的。

5.密度可达:在DBSCAN中,p是从q(核心对象)密度可达的,如果存在对象链,使得,从关于和MinPts直接密度可达的,即

内,则密度可达。

6.密度相连:如果存在对象,使得对象都是从q关于和MinPts密度可达的,则称是关于和MinPts密度相连的。

二:密度可达和密度相连

图1基于密度的聚类中的密度可达和密度相连性

由上图可看出m,p,o.r 都是核心对象,因为他们的内都只是包含3个对象。

1.对象q是从m直接密度可达的。对象m从p直接密度可达的。

2.对象q是从p(间接)密度可达的,因为q从m直接密度可达,m从p直接密度可达。

3.r和s是从o密度可达的,而o是从r密度可达的,所有o,r和s都是密度相连的。

DBSCAN算法的流程:



没有更多推荐了,返回首页