利用全局和局部GAN实现侧脸生成正脸

该博客介绍了如何利用全局和局部感知GAN网络进行逼真且保持身份的正脸图像合成。文章详细阐述了生成网络的结构,包括像素级损失、对称损失、判别网络损失和身份保持损失,并描述了训练过程和网络参数设置。实验表明,局部路径网络在恢复旋转特征方面的效果显著,而各种损失函数的组合有助于提高识别效果。
摘要由CSDN通过智能技术生成

参考文献为:

Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and
Identity Preserving Frontal View Synthesis

文章对GAN网络进行改进,生成网络包含两个网络,一个用于局部特征生成,另一个用于全局特征生成,网络结构如下:

这里写图片描述

如图所示,利用一个Local Pathway网络学习人脸的局部特征,如眼睛,,嘴巴,鼻子,网络输入为侧脸图像的四个局部块,这四个局部块分别为包含左,右眼睛,嘴巴,鼻子的块,作为Local Pathway网络的输入,输出为正面的眼睛,,嘴巴,鼻子.

Landmark Located Patch Network

四个局部块提取方法为,利用人脸特征点,分别求左,右眼睛,嘴巴,鼻子的中心,并以其中心,截取图像块,这样对于每张输入图像,就得到四个图像块 Gθli,i0,1,2,3 .将四个块分别输入local pathway中,输出为正面的块特征,即正面的眼睛,,嘴巴,鼻子.将输出块融合,得到一个人脸五官图像.

利用一个Global Pathway网络学习人脸的全局特征,如人脸轮廓等底层信息,网络输入为整张侧脸图像,输出为与输入大小相同的图像,最后将局部和全局特征结合,得到生成图像(正脸图像).

之后将生成图像输入判别网络(Discriminator Network).

生成网络

生成网络损失函数为,在原有交叉损失熵 Lcrossentropy 的基础上,加上合成损失函数 L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值