松弛变量:若所研究的线性规划模型的约束条件全是小于类型,那么可以通过标准化过程引入M个非负的松弛变量。
松弛变量的引入常常是为了便于在更大的可行域内求解。若为0,则收敛到原有状态,若大于零,则约束松弛。
对线性规划问题的研究是基于标准型进行的。因此对于给定的非标准型线性规划问题的数学模型,则需要将其化为标准型。一般地,对于不同形式的线性规划模型,可以采用一些方法将其化为标准型。其中,
当约束条件为“≤”(“≥”)类型的线性规划问题,可在不等式左边加上(或者减去)一个非负的新变量,即可化为等式。这个新增的非负变量称为松弛变量(或剩余变量),也可统称为松弛变量。在目标函数中一般认为新增的松弛变量的系数为零。
松弛变量的引入常常是为了便于在更大的可行域内求解。若为0,则收敛到原有状态,若大于零,则约束松弛。
对线性规划问题的研究是基于标准型进行的。因此对于给定的非标准型线性规划问题的数学模型,则需要将其化为标准型。一般地,对于不同形式的线性规划模型,可以采用一些方法将其化为标准型。其中,
当约束条件为“≤”(“≥”)类型的线性规划问题,可在不等式左边加上(或者减去)一个非负的新变量,即可化为等式。这个新增的非负变量称为松弛变量(或剩余变量),也可统称为松弛变量。在目标函数中一般认为新增的松弛变量的系数为零。