用于序列标记的mask条件随机场 非法路径问题

命名实体识别:

在这里插入图片描述
命名实体:
地点:
在这里插入图片描述
人物:
在这里插入图片描述
机构:
在这里插入图片描述
完形填空:
在这里插入图片描述标签方案:

通常,使用BIO或BIOES等标记方案来区分文本块的边界和类型。
在这里插入图片描述
在本例中,模型预测包含了一个非法的转换B-MISC→I-ORG。
在这里插入图片描述

标签序列(y1,……,yT)可以视为一条路径。如果一个路径至少包含一个非法转换,那么我们说它是一个非法路径。

默认方法:

Sang et al. (2000)提出:如果标记为I-X的单词遵循标记为O或I-Y的单词,块识别器的输出可能包含块标记中的不一致,而X和Y则不相同。这些不一致可以通过假设这样的I-X标签启动了一个新的块来解决。
在这里插入图片描述
高达40%的假阳性是由于非法路径:

在这里插入图片描述

Neural CRF模型

传统的Neural-CRF模型:
在这里插入图片描述
CRF模型为任何输入序列x和任何标签序列y分配一个分数s(y,x)。标记样品(x、y)的损失定义为:
在这里插入图片描述
用A表示转换矩阵,用W表示神经网络中所有剩余可训练参数的集合。

训练:
在这里插入图片描述
解码:在这里插入图片描述
任务条件随机字段
让表示非法路径的集合,即:包含至少一个非法转换的路径。我们建议将“候选路径的空间”约束为所有合法路径的路径集:

训练:

在这里插入图片描述
解码:在这里插入图片描述
掩码转移矩阵(Masked Transition Matrix):
在这里插入图片描述
主要结果:在这里插入图片描述
在这里插入图片描述

MCRF算法:
在这里插入图片描述
CRF解码路径vs MCRF解码路径的一个例子:

在这里插入图片描述
实验结果:
在这里插入图片描述
Baseline:在这里插入图片描述
中文NER的结果:在这里插入图片描述
损失曲线:
在这里插入图片描述

CRF和MCRF在验证集上的损失曲线

完形填空的结果:
在这里插入图片描述

标签方案的消融研究:
在这里插入图片描述
在标签方案上的消融研究(BIO vs BIOES),绘制了验证集上的f1分数

贡献总结:

据我们所知,我们是第一个证明,在nery-CRF框架中,非法路径问题是内在的,可能占总错误的不可忽略的比例(高达40%)。
我们提出了蒙面条件随机场(MCRF),这是CRF的一个改进版本,通过设计免受非法路径问题。我们还为MCRF设计了一个算法,它只需要几行代码来实现。
我们在全面的实验中表明,MCRF的性能明显优于它的CRF对应物,并且其性能与更复杂的模型相当或更好。我们在两个中国NER数据集中实现了新的最先进水平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值