梯度寻优

一.最优化与计算复杂性:以最小的代价取得最大的收益(矩阵分析,数值分析,计算机(GPU并行计算,云计算,云存储))----数学建模、公式推导、算法设计。机器学习中的多数算法都是针对NP类问题(包括NP完全性问题):背包问题,最短路径问题,TSP问题,最大团问题,图同构问题等。


二.梯度下降法

     梯度法是求解无约束多源函数值的最早的数值方法,很多机器学习的常用算法都是以它作为算法框架,进行改进和修正而导出更为复杂的优化算法。Logistic函数---世界不是非黑即白。


函数表达式:


(1)运用其作为线性分类器:

# -*- coding: utf-8 -*-
# Filename : Recommand_lib.py

from numpy import *
import numpy as np 
import operator
# import scipy.spatial.distance.cdist as dist
import matplotlib.pyplot as plt 

def savefile(savepath,content):
	fp = open(savepath,"wb")
	fp.write(content)
	fp.close()

# 数据文件转矩阵
# path: 数据文件路径
# delimiter: 文件分隔符
def file2matrix(path,delimiter):	
	recordlist = []
	fp = open(path,"rb") 	# 读取文件内容
	content = fp.read()
	fp.close()
	rowlist = content.splitlines() 	# 按行转换为一维表
	# 逐行遍历 		# 结果按分隔符分割为行向量
	recordlist=[map(eval, row.split(delimiter)) for row in rowlist if row.strip()]	
	return mat(recordlist)	# 返回转换后的矩阵形式

# 欧氏距离
eps = 1.0e-6
def distEclud(vecA, vecB):
	return linalg.norm(vecA-vecB)+eps 
# 相关系数
def distCorrcoef(vecA, vecB):
	return corrcoef(vecA, vecB, rowvar = 0)[0][1]
# Jaccard距离	
# def distJaccard(vecA, vecB):
#	temp = mat([array(vecA.tolist()[0]),array(vecB.tolist()[0])])
#	return dist.pdist(temp,'jaccard')
# 余弦相似度
def cosSim(vecA, vecB):	
	return (dot(vecA,vecB.T)/((linalg.norm(vecA)*linalg.norm(vecB))+eps))[0,0]
# 绘制散点图    
def drawScatter(plt,mydata,size=20,color='blue',mrkr='o'):
	m,n = shape(mydata)
	if m>n and m>2:
		plt.scatter(mydata.T[0],mydata.T[1],s=size,c=color,marker=mrkr)   
	else:
		plt.scatter(mydata[0],mydata[1],s=size,c=color,marker=mrkr)   

# 绘制分类点
def drawScatterbyLabel(plt,Input):
	m,n=shape(Input)
	target = Input[:,-1] 
	for i in xrange(m):
		if target[i]==0:
			plt.scatter(Input[i,0],Input[i,1],c='blue',marker='o')
		else:
			plt.scatter(Input[i,0],Input[i,1],c='red',marker='s')	


# 硬限幅函数
def hardlim(dataSet):
	dataSet[nonzero(dataSet.A>0)[0]]=1
	dataSet[nonzero(dataSet.A<=0)[0]]=0	
	return dataSet

# Logistic函数
def logistic(wTx):
	return 1.0/(1.0+exp(-wTx))

def buildMat(dataSet):
	m,n=shape(dataSet)
	dataMat = zeros((m,n))
	dataMat[:,0] = 1 
	dataMat[:,1:] = dataSet[:,:-1]
	return 	dataMat
	
# 分类函数
def classifier(testData, weights):
    prob = logistic(sum(testData*weights)) # 求取概率--判别算法
    if prob > 0.5: 
    	return 1.0 # prob>0.5 返回为1
    else: 
    	return 0.0          # prob<=0.5 返回为0	

# 最小二乘回归,用于测试    	
def standRegres(xArr,yArr):
	xMat = mat(ones((len(xArr),2)))
	yMat = mat(ones((len(yArr),1)))
	xMat[:,1:] = (mat(xArr).T)[:,0:]	
	yMat[:,0:] = (mat(yArr).T)[:,0:]
	xTx = xMat.T*xMat
	if linalg.det(xTx) == 0.0:
		print "This matrix is singular, cannot do inverse"
		return
	ws = xTx.I * (xMat.T*yMat)
	return ws

# -*- coding: utf-8 -*-
import os
import sys
import numpy as np 
import operator
from numpy import *
from common_libs import *
import matplotlib.pyplot as plt 

# 1.导入数据
Input = file2matrix("testSet.txt","\t")
target = Input[:,-1] #获取分类标签列表
[m,n] = shape(Input) 
# 2.按分类绘制散点图
drawScatterbyLabel(plt,Input)

# 3.构建b+x 系数矩阵:b这里默认为1
dataMat = buildMat(Input)
print dataMat[:10,:]
# 4. 定义步长和迭代次数 
alpha = 0.001 # 步长
steps = 500  # 迭代次数
weights = ones((n,1))# 初始化权重向量
# 5. 主程序
for k in xrange(steps):
	gradient = dataMat*mat(weights) # 梯度
	output = logistic(gradient)  # logistic函数
	errors = target-output # 计算误差
	weights = weights + alpha*dataMat.T*errors  

print weights	# 输出训练后的权重
# 6. 绘制训练后超平面
X = np.linspace(-7,7,100)
#y=w*x+b: b:weights[0]/weights[2]; w:weights[1]/weights[2]
Y = -(double(weights[0])+X*(double(weights[1])))/double(weights[2])
plt.plot(X,Y)
plt.show()
程序运行结果如下:


蓝色直线就是分类超平面,可以看到该直线按照红色和蓝色样本点的分布,将训练集分为两个部分。

(2)对测试集进行分类

# -*- coding: utf-8 -*-
import os
import sys
import numpy as np 
import operator
from numpy import *
from common_libs import *

weights = mat([[ 4.12414349],[ 0.48007329],[-0.6168482 ]])
testdata = mat([-0.147324,2.874846])
m,n = shape(testdata)
testmat = zeros((m,n+1))
testmat[:,0] = 1 
testmat[:,1:] = testdata
print classifier(testmat,weights)
运行结果如下:



三.算法分析

    (1)超平面分析:超平面的斜率和截距,评估结果显示斜率参数已经达到平稳,但是截距并未达到平稳。

    (2)权重向量的收敛评估


四.随机梯度下降法:算法改进与评估(引进随机样本抽取方式,并且提供了一种动态步长取值的策略),既要保证优化精度,又要满足收敛速度。

(1)权重收敛评估

# -*- coding: utf-8 -*-
import os
import sys
import numpy as np 
import operator
from numpy import *
from common_libs import *
import matplotlib.pyplot as plt 


Input = file2matrix("testSet.txt","\t")
target = Input[:,-1] #获取分类标签列表
[m,n] = shape(Input) 

dataMat = buildMat(Input)

# 4. 定义迭代次数 
steps = 500  # 迭代次数
weights = ones(n) # 初始化权重向量

weightlist =[]
# 算法主程序:
# 1.对数据集的每个行向量进行m次随机抽取
# 2.对抽取之后的行向量应用动态步长
# 3.进行梯度计算
# 4.求得行向量的权值,合并为矩阵的权值
for j in xrange(steps):
	dataIndex = range(m) # 以导入数据的行数m为个数产生索引向量:0~99
	for i in xrange(m):
		alpha = 2/(1.0+j+i)+0.0001  #动态修改alpha步长从4->0.016
		randIndex = int(random.uniform(0,len(dataIndex)))	#生成0~m之间随机索引
		vectSum = sum(dataMat[randIndex]*weights.T) # 计算dataMat随机索引与权重的点积和
		grad = logistic(vectSum) # 计算点积和的梯度
		errors = target[randIndex]-grad # 计算误差
		weights = weights + alpha * errors * dataMat[randIndex] #计算行向量权重
		del(dataIndex[randIndex]) #从数据集中删除选取的随机索引	
	weightlist.append(weights)	

lenwl=  len(weightlist);
weightmat = zeros((lenwl,n))
i=0
for weight in weightlist:
	weightmat[i,:]=weight
	i+= 1
fig = plt.figure()
axes1 = plt.subplot(211); axes2 = plt.subplot(212)
X1 = np.linspace(0,lenwl,lenwl)
axes1.plot(X1,-weightmat[:,0]/weightmat[:,2]); # 截距 
axes1.set_ylabel('Intercept')
axes2.plot(X1,-weightmat[:,1]/weightmat[:,2]); # 斜率
axes2.set_ylabel('Slope')
# 生成回归线
ws=standRegres(X1,-weightmat[:,0]/weightmat[:,2])	
Y1=ws[0,0]+X1*ws[1,0]
axes1.plot(X1,Y1,color = 'red', linewidth=2, linestyle="-"); 
plt.show()
运行结果如下:


(2)权重分量的变化趋势

# -*- coding: utf-8 -*-
import os
import sys
import numpy as np 
import operator
from numpy import *
from common_libs import *
import matplotlib.pyplot as plt 


Input = file2matrix("testSet.txt","\t")
target = Input[:,-1] #获取分类标签列表
[m,n] = shape(Input) 

dataMat = buildMat(Input)

# 4. 定义迭代次数 
steps = 500  # 迭代次数
weights = ones(n) # 初始化权重向量

weightlist =[]
# 算法主程序:
# 1.对数据集的每个行向量进行m次随机抽取
# 2.对抽取之后的行向量应用动态步长
# 3.进行梯度计算
# 4.求得行向量的权值,合并为矩阵的权值
for j in xrange(steps):
	dataIndex = range(m) # 以导入数据的行数m为个数产生索引向量:0~99
	for i in xrange(m):
		alpha = 2/(1.0+j+i)+0.0001  #动态修改alpha步长从4->0.016
		randIndex = int(random.uniform(0,len(dataIndex)))	#生成0~m之间随机索引
		vectSum = sum(dataMat[randIndex]*weights.T) # 计算dataMat随机索引与权重的点积和
		grad = logistic(vectSum) # 计算点积和的梯度
		errors = target[randIndex]-grad # 计算误差
		weights = weights + alpha * errors * dataMat[randIndex] #计算行向量权重
		del(dataIndex[randIndex]) #从数据集中删除选取的随机索引	
	weightlist.append(weights)	

lenwl=  len(weightlist);
weightmat = zeros((lenwl,n))
i=0
for weight in weightlist:
	weightmat[i,:]=weight
	i+= 1
fig = plt.figure()
axes1 = plt.subplot(311); axes2 = plt.subplot(312); axes3 = plt.subplot(313)
X1 = np.linspace(0,lenwl,lenwl)
axes1.plot(X1,weightmat[:,0]); # 
axes1.set_ylabel('weight[0]')
axes2.plot(X1,weightmat[:,1]); #
axes2.set_ylabel('weight[1]')
axes3.plot(X1,weightmat[:,2]); #
axes3.set_ylabel('weight[2]') 
plt.show()

运行结果:



总结:本章主要讲述了:最优化方法、凸优化理论、计算复杂性、梯度计算、迭代寻优等机器学习的相关理论。



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值