关于梯度寻优的理解

本文探讨了梯度寻优的基本原理,分析了沿着函数梯度方向移动时函数值的变化趋势。对于梯度下降,当梯度为负时,函数值减少;为零时,达到局部极小值;为正时,函数值增加。在寻找函数极小值时,应向梯度的反方向更新参数,并通过学习率α控制步长以平衡收敛速度和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:为什么沿着函数梯度的方向蹦,函数值一定会往增大的方向走或者走向收敛?

假设
设函数为 f ( x ) f(x) f(x) f ( x ) f(x) f(x)的梯度为 f ′ ( x ) f^{'}(x) f(x),函数上有一点为 x 0 x_0 x0,相应的函数值和梯度值为 f ( x 0 ) 、 f ′ ( x 0 ) f(x_0)、f^{'}(x_0) f(x0)f(x0)

分类讨论

f ′ ( x ) f^{'}(x) f(x)无非三种状态:负数、0、正数。

  • f ′ ( x 0 ) < 0 f^{'}(x_0)<0 f(x0)<0时, f ( x ) f(x) f(x)递减,所以 x 0 > x 0 + f ′ ( x 0 ) x_0>x_0+f^{'}(x_0) x0>x0+f(x0),所以 f ( x 0 ) < f ( x 0 + f ′ ( x 0 ) ) f(x_0)<f(x_0+f^{'}(x_0)) f(x0)<f(x0+f(x0))
  • f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0 时, x 0 = x 0 + f ′ ( x 0 ) x_0=x_0+f^{'}(x_0) x0=x0+f(x0),所以会一直原地踏步,也就是所谓的收敛了;
  • f ′ ( x 0 ) > 0 f^{'}(x_0)>0 f(x0)>0时, f ( x ) f(x) f(x)递增,所以 x 0 < x 0 + f ′ ( x 0 ) x_0<x_0+f^{'}(x_0) x0<x0+f(x0),所以 f ( x 0 ) < f ( x 0 + f ′ ( x 0 ) ) f(x_0)<f(x_0+f^{'}(x_0)) f(x0)<f(x0+f(x0))

应用

  • 寻求 f ( x ) f(x) f(x)的极小值时,应向梯度的反方向寻找,即 x n + 1 = x n − α f ′ ( x n ) x_{n+1}=x_{n}-\alpha f^{'}(x_n) xn+1=xnαf(xn)
  • 寻求 f ( x ) f(x) f(x)的极大值时,应向梯度的方向寻找,即 x n + 1 = x n + α f ′ ( x n ) x_{n+1}=x_{n}+ \alpha f^{'}(x_n) xn+1=xn+αf(xn)
  • 判断找到极值的条件即 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0

一般寻找的时候会设个步长 α \alpha α,也称学习率。就是每次迈的步子大小,步子迈大了,会来回震荡;迈小了,收敛速度会慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值