斯坦福大学机器学习笔记(5)-logistic回归的优化

如前所述,回归是使用函数来模拟样本的。logistic回归,是对取值为0或1的布尔值的模拟。logistic回归中使用的函数的值域为[0, 1],可以视为布尔输出为1的一个概率值。
已知包含 m 个元素的的训练集合被表示为{(x(1),y(1)),...,(x(m),y(m))}。样本元素中的 x(i) 是一个向量: x(i)=(x(i)0,x(i)1,...,x(i)n)T x(i)0=1 y 是标量。向量θ是用来拟合的参数, θ=(θ0,θ1,...,θn) 。使用 θ 为参数的logistic回归函数 h 是一个sigmoid函数,如下所示。
hθ(x)=11+eθTx
问题是,如何选择合适的 θ 使得 hθ 能够较好地拟合训练集?
选择之一:使用方差来定义代价函数。代价函数用于描述拟合函数的输出与训练集中给定输出之间的不同。方差代价函数定义如下。
J(θ)=1mΣmi=1(hθ(x(i))y(i))2
但是,这种定义会面临一个问题,也就是 J(θ) 可能是一个非凸函数。而一般情况下,凸函数会是一个更好的选择。换句话说,在logistic回归中,其代价函数与线性回归的不同。
假设训练集中只有一个元素,那么当 y=1 时,上述代价函数将被简化为:
J(θ)=(hθ(x)1)2
也就是说,当 hθ(x) 趋近于期待值1时,其代价函数的值趋近于0。
hθ(x) 趋近于错误的值0时,其代价函数的之趋近与1。代价函数的曲线如下图所示。
这里写图片描述
我们可以选择新的代价函数,使之具有下述属性。
若样本中期待值为1,则:
hθ(x)1,J(θ)0 hθ(x)0,J(θ)
此时代价函数的曲线如下图所示。
这里写图片描述
若样本中期待值为0,则:
hθ(x)0,J(θ)0 hθ(x)1,J(θ)
新的代价函数的数学定义如下。
y=1,cost(hθ(x),y)=loghθ(x)
y=0,cost(hθ(x),y)=log(1hθ(x))
使用一个统一的函数来定义,代价如下(对于训练样本集中的单个元素)。
cost(hθ(x),y)=yloghθ(x)(1y)log(1hθ(x))
对于整个样本集而言,代价函数的定义如下。
J(θ)=1mcost(hθ(x(i),y(i))
=1m[Σmi=1y(i)loghθ(x)+(1y(i))log(1hθ(x(i)))]
其中, hθ 是取值为[0, 1],用来拟合样本所对应函数的函数,被定义为如下形式。

hθ(x)=11+eθTx

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值