文章目录
1 问题现象
使用yolo v3 等目标检测模型训练自己数据集,预测图片时出现问题: 两框重叠,如下图所示:对于同样一辆汽车,模型反复的标记。
2 解决办法
解决办法就是:非极大值抑制(Non-Maximum Suppression)
3 Non-Maximum Suppression 原理
3.1 什么是非极大值抑制
非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。
3.2 为什么要用非极大值抑制
以目标检测为例:目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。Demo如下图:
左图是人脸检测的候选框结果,每个边界框有一个置信度得分(confidence score),如果不使用非极大值抑制,就会有多个候选框出现。右图是使用非极大值抑制之后的结果,符合我们人脸检测的预期结果。
3.3 如何使用非极大值抑制
前提:目标边界框列表及其对应的置信度得分列表,设定阈值,阈值用来删除重叠较大的边界框。
IoU:intersection-over-union,即两个边界框的交集部分除以它们的并集。
非极大值抑制的流程如下:
- 根据置信度得分进行排序
- 选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除
- 计算所有边界框的面积
- 计算置信度最高的边界框与其它候选框的IoU。
- 删除IoU大于阈值的边界框
- 重复上述过程,直至边界框列表为空。
Python代码如下:
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
import cv2
import numpy as np
"""
Non-max Suppression Algorithm
@param list Object candidate bounding boxes
@param list Confidence score of bounding boxes
@param float IoU threshold
@return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):
# If no bounding boxes, return empty list
if len(bounding_boxes) == 0:
return [], []
# Bounding boxes
boxes = np.array(bounding_boxes)
# coordinates of bounding boxes
start_x = boxes[:, 0]
start_y = boxes[:, 1]
end_x = boxes[:, 2]
end_y = boxes[:, 3]
# Confidence scores of bounding boxes
score = np.array(confidence_score)
# Picked bounding boxes
picked_boxes = []
picked_score