Task06:批量归一化和残差网络/凸优化/梯度下降

1.批量归一化和残差网络

批量归一化背景: 随机梯度下降(SGD)是简单而有效的,但是对超参数(例如学习率)调节以及网络权值初始化的要求比较高。网络训练变得复杂,因为每个层的输入都受到所有前层参数的影响,因此随着网络越来越深,网络参数的微小变化会放大。网络层输入分布的改变,使得网络每个层要不断去适应新的输入分布。学习系统的输入分布发生变化就会产生Convariate Shift。

批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem)。

统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的。也就是说,训练数据和测试数据是满足相同分布的。这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障。

Convariate Shift是指训练集的样本数据和目标样本集分布不一致时,训练得到的模型无法很好的Generalization。它是分布不一致假设之下的一个分支问题,也就是指Sorce Domain和Target Domain的条件概率一致的,但是其边缘概率不同。的确,对于神经网络的各层输出,在经过了层内操作后,各层输出分布就会与对应的输入信号分布不同,而且差异会随着网络深度增大而加大了,但每一层所指向的Label仍然是不变的。

解决办法:一般是根据训练样本和目标样本的比例对训练样本做一个矫正。所以,通过引入Bactch Normalization来标准化某些层或者所有层的输入,从而固定每层输入信息的均值和方差。

方法:Bactch Normalization一般用在非线性映射(激活函数)之前,对x=Wu+b做标准化,是结果(输出信号各个维度)的均值为0,方差为1。让每一层的输入有一个稳定的分布会有利于网络的训练。

优点:Bactch Normalization通过标准化让激活函数分布在线性区间,结果就是加大了梯度,让模型更大胆的进行梯度下降,BN的使用可以允许使用更大的学习率,同时减小对权重初始化的依赖程度。BN类似于一种正则化方法,可以减少对DropOut的依赖。具有如下优点:

• 加大搜索的步长,加快收敛的速度;
• 更容易跳出局部最小值;
• 破坏原来的数据分布,一定程度上缓解了过拟合;

因此,在遇到神经网络收敛速度很慢或梯度爆炸(Gradient Explore)等无法训练的情况系啊,都可以尝试用Bactch Normalization来解决。
梯度爆炸:梯度非常大,链式求导后乘积就变得很大,使权重变得非常大,产生指数级爆炸。

1.对全连接层做批量归一化
位置:全连接层中的仿射变换和激活函数之间。
全连接:
x = W u + b o u t p u t = ϕ ( x ) \boldsymbol{x} = \boldsymbol{W\boldsymbol{u} + \boldsymbol{b}} \\ output =\phi(\boldsymbol{x}) x=Wu+boutput=ϕ(x)

批量归一化:
o u t p u t = ϕ ( BN ( x ) ) output=\phi(\text{BN}(\boldsymbol{x})) output=ϕ(BN(x))

y ( i ) = BN ( x ( i ) ) \boldsymbol{y}^{(i)} = \text{BN}(\boldsymbol{x}^{(i)}) y(i)=BN(x(i))

μ B ← 1 m ∑ i = 1 m x ( i ) , \boldsymbol{\mu}_\mathcal{B} \leftarrow \frac{1}{m}\sum_{i = 1}^{m} \boldsymbol{x}^{(i)}, μBm1i=1mx(i),
σ B 2 ← 1 m ∑ i = 1 m ( x ( i ) − μ B ) 2 , \boldsymbol{\sigma}_\mathcal{B}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m}(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B})^2, σB2m1i=1m(x(i)μB)2,

x ^ ( i ) ← x ( i ) − μ B σ B 2 + ϵ , \hat{\boldsymbol{x}}^{(i)} \leftarrow \frac{\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_\mathcal{B}}{\sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon}}, x^(i)σB2+ϵ x(i)μB,

这⾥ϵ > 0是个很小的常数,保证分母大于0

y ( i ) ← γ ⊙ x ^ ( i ) + β . {\boldsymbol{y}}^{(i)} \leftarrow \boldsymbol{\gamma} \odot \hat{\boldsymbol{x}}^{(i)} + \boldsymbol{\beta}. y(i)γx^(i)+β.

引入可学习参数:拉伸参数γ和偏移参数β。若 γ = σ B 2 + ϵ \boldsymbol{\gamma} = \sqrt{\boldsymbol{\sigma}_\mathcal{B}^2 + \epsilon} γ=σB2+ϵ β = μ B \boldsymbol{\beta} = \boldsymbol{\mu}_\mathcal{B} β=μB,批量归一化无效。

2.对卷积层做批量归⼀化
位置:卷积计算之后、应⽤激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。
计算:对单通道,batchsize=m,卷积计算输出=pxq
对该通道中m×p×q个元素同时做批量归一化,使用相同的均值和方差。

3.预测时的批量归⼀化
训练:以batch为单位,对每个batch计算均值和方差。
预测:用移动平均估算整个训练数据集的样本均值和方差。

残差网络(ResNet)

ResNet能够缓解深层网络难以训练的梯度弥散问题。
深度学习的问题:深度CNN网络达到一定深度后再一味地增加层数并不能带来进一步地分类性能提高,反而会招致网络收敛变得更慢,准确率也变得更差。

残差块(Residual Block)

恒等映射:
左边:f(x)=x
右边:f(x)-x=0 (易于捕捉恒等映射的细微波动)

Image Name

在残差块中,输⼊可通过跨层的数据线路更快 地向前传播。

稠密连接网络(DenseNet)

Image Name

主要构建模块:

稠密块(dense block): 定义了输入和输出是如何连结的。
过渡层(transition layer):用来控制通道数,使之不过大。

2.凸优化

凸优化是一门能够单独拿出来研究许久的课程,可惜我只学到了皮毛。
资料看Boyd的那本凸优化就行了,之前在图书馆看到过有中文版的。
B站万岁:https://www.bilibili.com/video/av32517559?from=search&seid=15775349630640921902

3.梯度下降

一维梯度下降

证明:沿梯度反方向移动自变量可以减小函数值

泰勒展开:

f ( x + ϵ ) = f ( x ) + ϵ f ′ ( x ) + O ( ϵ 2 ) f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+\mathcal{O}\left(\epsilon^{2}\right) f(x+ϵ)=f(x)+ϵf(x)+O(ϵ2)

代入沿梯度方向的移动量 η f ′ ( x ) \eta f^{\prime}(x) ηf(x)

f ( x − η f ′ ( x ) ) = f ( x ) − η f ′ 2 ( x ) + O ( η 2 f ′ 2 ( x ) ) f\left(x-\eta f^{\prime}(x)\right)=f(x)-\eta f^{\prime 2}(x)+\mathcal{O}\left(\eta^{2} f^{\prime 2}(x)\right) f(xηf(x))=f(x)ηf2(x)+O(η2f2(x))

f ( x − η f ′ ( x ) ) ≲ f ( x ) f\left(x-\eta f^{\prime}(x)\right) \lesssim f(x) f(xηf(x))f(x)

x ← x − η f ′ ( x ) x \leftarrow x-\eta f^{\prime}(x) xxηf(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值