批量归一化和残差网络;凸优化;梯度下降

批量归一化(BatchNormalization)
对输入的标准化(浅层模型)
处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。
标准化处理输入数据使各个特征的分布相近

批量归一化(深度模型)
利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

1.对全连接层做批量归一化
位置:全连接层中的仿射变换和激活函数之间。
全连接:

x=Wu+boutput=ϕ(x)

批量归一化:

output=ϕ(BN(x))
 
y(i)=BN(x(i))
 
μB←1m∑i=1mx(i),
 
σ2B←1m∑i=1m(x(i)−μB)2,
 
x^(i)x(i)−μBσ2B+ϵ−−−−−−√,
 
这⾥ϵ > 0是个很小的常数,保证分母大于0

y(i)←γ⊙x^(i)+β.
引入可学习参数:拉伸参数γ和偏移参数β。若 γ=σ2B+ϵ−−−−−−√ 和 β=μB ,批量归一化无效。

2.对卷积层做批量归⼀化
位置:卷积计算之后、应⽤激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。 计算:对单通道,batchsize=m,卷积计算输出=pxq 对该通道中m×p×q个元素同时做批量归一化,使用相同的均值和方差。

3.预测时的批量归⼀化
训练:以batch为单位,对每个batch计算均值和方差。
预测:用移动平均估算整个训练数据集的样本均值和方差。

从零实现
#目前GPU算力资源预计17日上线,在此之前本代码只能使用CPU运行。
#考虑到本代码中的模型过大,CPU训练较慢,
#我们还将代码上传了一份到 https://www.kaggle.com/boyuai/boyu-d2l-deepcnn
#如希望提前使用gpu运行请至kaggle。

```go
import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision
import sys
sys.path.append("/home/kesci/input/") 
import d2lzh1981 as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
# 判断当前模式是训练模式还是预测模式
if not is_training:
    # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差

```go
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var
class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features) #全连接层输出神经元
        else:
            shape = (1, num_features, 1, 1)  #通道数
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)
```clike
def forward(self, X):
    # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
    if self.moving_mean.device != X.device:
        self.moving_mean = self.moving_mean.to(X.device)
        self.moving_var = self.moving_var.to(X.device)
    # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
    Y, self.moving_mean, self.moving_var = batch_norm(self.training, 
        X, self.gamma, self.beta, self.moving_mean,
        self.moving_var, eps=1e-5, momentum=0.9)
    return Y

优化与深度学习

优化与估计

尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同。

优化方法目标:训练集损失函数值
深度学习目标:测试集损失函数值(泛化性)

%matplotlib inline
import sys
sys.path.append('/home/kesci/input')
import d2lzh1981 as d2l
from mpl_toolkits import mplot3d # 三维画图
import numpy as np
def f(x): return x * np.cos(np.pi * x)
def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x)

d2l.set_figsize((5, 3))
x = np.arange(0.5, 1.5, 0.01)
fig_f, = d2l.plt.plot(x, f(x),label="train error")
fig_g, = d2l.plt.plot(x, g(x),'--', c='purple', label="test error")
fig_f.axes.annotate('empirical risk', (1.0, -1.2), (0.5, -1.1),arrowprops=dict(arrowstyle='->'))
fig_g.axes.annotate('expected risk', (1.1, -1.05), (0.95, -0.5),arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('risk')
d2l.plt.legend(loc="upper right")
<matplotlib.legend.Legend at 0x7fc092436080>

优化在深度学习中的挑战
局部最小值
鞍点
梯度消失
局部最小值

f(x)=xcosπx
 
def f(x):
    return x * np.cos(np.pi * x)

d2l.set_figsize((4.5, 2.5))
x = np.arange(-1.0, 2.0, 0.1)
fig,  = d2l.plt.plot(x, f(x))
fig.axes.annotate('local minimum', xy=(-0.3, -0.25), xytext=(-0.77, -1.0),
                  arrowprops=dict(arrowstyle='->'))
fig.axes.annotate('global minimum', xy=(1.1, -0.95), xytext=(0.6, 0.8),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

鞍点

x = np.arange(-2.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, x**3)
fig.axes.annotate('saddle point', xy=(0, -0.2), xytext=(-0.52, -5.0),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

梯度下降

(Boyd & Vandenberghe, 2004%matplotlib inline
import numpy as np
import torch
import time
from torch import nn, optim
import math
import sys
sys.path.append('/home/kesci/input')
import d2lzh1981 as d2l

一维梯度下降
证明:沿梯度反方向移动自变量可以减小函数值

泰勒展开:

f(x+ϵ)=f(x)+ϵf′(x)+O(ϵ2)
代入沿梯度方向的移动量 ηf′(x):

f(x−ηf′(x))=f(x)−ηf′2(x)+O(η2f′2(x))
f(x−ηf′(x))f(x)
x←x−ηf′(x)
e.g.

f(x)=x2
def f(x):
    return x**2  # Objective function

def gradf(x):
    return 2 * x  # Its derivative

def gd(eta):
    x = 10
    results = [x]
    for i in range(10):
        x -= eta * gradf(x)
        results.append(x)
    print('epoch 10, x:', x)
    return results

res = gd(0.2)
epoch 10, x: 0.06046617599999997
def show_trace(res):
    n = max(abs(min(res)), abs(max(res)))
    f_line = np.arange(-n, n, 0.01)
    d2l.set_figsize((3.5, 2.5))
    d2l.plt.plot(f_line, [f(x) for x in f_line],'-')
    d2l.plt.plot(res, [f(x) for x in res],'-o')
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('f(x)')
    

show_trace(res)

学习率

show_trace(gd(0.05))
epoch 10, x: 3.4867844009999995

show_trace(gd(1.1))
epoch 10, x: 61.917364224000096

局部极小值

e.g.

f(x)=xcoscx
c = 0.15 * np.pi

def f(x):
    return x * np.cos(c * x)

def gradf(x):
    return np.cos(c * x) - c * x * np.sin(c * x)

show_trace(gd(2))
epoch 10, x: -1.528165927635083

多维梯度下降
∇f(x)=[f(x)∂x1,f(x)∂x2,,f(x)∂xd]f(x+ϵ)=f(x)+ϵ⊤∇f(x)+O(∥ϵ∥2)
x←x−η∇f(x)
def train_2d(trainer, steps=20):
    x1, x2 = -5, -2
    results = [(x1, x2)]
    for i in range(steps):
        x1, x2 = trainer(x1, x2)
        results.append((x1, x2))
    print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2))
    return results

def show_trace_2d(f, results): 
    d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
    x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1))
    d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
    d2l.plt.xlabel('x1')
    d2l.plt.ylabel('x2')
f(x)=x21+2x22
eta = 0.1

def f_2d(x1, x2):  # 目标函数
    return x1 ** 2 + 2 * x2 ** 2

def gd_2d(x1, x2):
    return (x1 - eta * 2 * x1, x2 - eta * 4 * x2)

show_trace_2d(f_2d, train_2d(gd_2d))
epoch 20, x1 -0.057646, x2 -0.000073

自适应方法
牛顿法
在 x+ϵ 处泰勒展开:

f(x+ϵ)=f(x)+ϵ⊤∇f(x)+12ϵ⊤∇∇⊤f(x)ϵ+O(∥ϵ∥3)
最小值点处满足: ∇f(x)=0, 即我们希望 ∇f(x+ϵ)=0, 对上式关于 ϵ 求导,忽略高阶无穷小,有:

f(x)+Hfϵ=0 and hence ϵ=−H−1f∇f(x)
c = 0.5

def f(x):
    return np.cosh(c * x)  # Objective

def gradf(x):
    return c * np.sinh(c * x)  # Derivative

def hessf(x):
    return c**2 * np.cosh(c * x)  # Hessian

# Hide learning rate for now
def newton(eta=1):
    x = 10
    results = [x]
    for i in range(10):
        x -= eta * gradf(x) / hessf(x)
        results.append(x)
    print('epoch 10, x:', x)
    return results

show_trace(newton())
epoch 10, x: 0.0

c = 0.15 * np.pi

def f(x):
    return x * np.cos(c * x)

def gradf(x):
    return np.cos(c * x) - c * x * np.sin(c * x)

def hessf(x):
    return - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x)

show_trace(newton())
epoch 10, x: 26.83413291324767

show_trace(newton(0.5))
epoch 10, x: 7.269860168684531

收敛性分析
只考虑在函数为凸函数, 且最小值点上 f′′(x∗)>0 时的收敛速度:

令 xk 为第 k 次迭代后 x 的值, ek:=xk−x∗ 表示 xk 到最小值点 x∗ 的距离,由 f′(x∗)=0:

0=f′(xk−ek)=f′(xk)−ekf′′(xk)+12e2kf′′′(ξk)for some ξk∈[xk−ek,xk]

两边除以 f′′(xk), 有:

ek−f′(xk)/f′′(xk)=12e2kf′′′(ξk)/f′′(xk)

代入更新方程 xk+1=xk−f′(xk)/f′′(xk), 得到:

xk−x∗−f′(xk)/f′′(xk)=12e2kf′′′(ξk)/f′′(xk)
xk+1−x∗=ek+1=12e2kf′′′(ξk)/f′′(xk)12f′′′(ξk)/f′′(xk)≤c 时,有:

ek+1≤ce2k
预处理 (Heissa

n阵辅助梯度下降)

x←x−ηdiag(Hf)1∇x

梯度下降与线性搜索(共轭梯度法)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值