动手实现文本生成模型:基于 Decoder-only Transformer (PyTorch)

1. 选择框架:PyTorch

我们选择 PyTorch 作为实现框架。PyTorch 提供了灵活的动态图,并且拥有功能强大的 nn.Transformer 模块,方便我们快速构建模型。其社区活跃,资源丰富,是进行深度学习研究和开发的优秀选择。

确保你已经安装了 PyTorch 和其他必要的库:

Bash

pip install torch numpy tqdm

2. 数据准备

我们将使用一个小型文本数据集,例如莎士比亚的十四行诗或一小段故事。为了简化,我们直接在代码中包含一小段文本作为示例。

获取小型文本数据集

你可以从网上找一小段文本,或者创建一个名为 shakespeare.txt 的文件,粘贴一些莎士比亚的文字。例如:

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tattered weed of small worth held:
Then hours will fresh changes on the make,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值