这个加密和解密过程基于一个简单的逻辑,即将数字(素数或非素数)的类别(素数标记为1,非素数标记为0)通过一些变换进行隐藏和恢复。下面是对这个过程的详细解释和代码实现(以Python为例):
加密过程
生成素数与非素数列表:首先,我们需要一个函数来生成2到99999之间的所有素数和非素数。
随机选择并转换:然后,根据标签(1对应素数,0对应非素数),随机选择一个数,并减去1(这里减去1是为了确保解密时能正确还原标签,因为素数和非素数的直接判断不适用于解密后的结果)。
python
import random
from sympy import primerange
def generate_primes_and_non_primes(max_num):
primes = list(primerange(2, max_num + 1))
non_primes = [x for x in range(2, max_num + 1) if x not in primes]
return primes, non_primes
def encrypt(label, max_num):
primes, non_primes = generate_primes_and_non_primes(max_num)
if label == 1: # 1对应素数
selected = random.choice(primes)
else: # 0对应非素数
selected = random.choice(non_primes)
# 减去1以隐藏原始类别
return selected - 1
示例
label = 1 # 假设我们要加密的标签是1(素数)
max_num = 99999
encrypted_number = encrypt(label, max_num)
print(f"Encrypted Number: {encrypted_number}“)
解密过程
恢复原始数字:首先,将脱敏数字加1。
判断并还原标签:然后,判断加1后的数字是素数还是非素数,从而还原出原始标签。
python
def is_prime(n):
“”“简单判断一个数是否为素数””"
if n <= 1:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
def decrypt(encrypted_number):
original_number = encrypted_number + 1
if is_prime(original_number):
return 1 # 素数
else:
return 0 # 非素数
使用之前加密的数字进行解密
decrypted_label = decrypt(encrypted_number)
print(f"Decrypted Label: {decrypted_label}")
请注意,这里使用的is_prime函数是一个简单的素数判断函数,适用于较小的数。对于非常大的数,可能需要更高效的素数判断算法或使用现成的库函数(如sympy.isprime)。此外,上述代码假设encrypt函数和decrypt函数在同一个环境中运行,因此encrypted_number可以直接从encrypt传递到decrypt。在实际应用中,可能需要考虑数据传输和存储的安全性问题。