统计学中数据类型与几个基本概念

本文介绍了统计学中数据的分类,包括分类数据、顺序数据和数值型数据,并阐述了数据的收集方法如观测数据和实验数据,以及根据时间关系的截面数据和时间序列数据。同时,解释了统计中的关键概念,如总体、个体、样本、样本容量、参数和统计量,以及变量的类型——离散型和连续型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据的分类

按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。

分类数据:只能归于某一类别的非数字型数据,属于定性数据或品质数据。分类数据是对事物进行分类的                                     结果,数据表现为类别,是用文字来表达的。它是由分类尺度计量形成的。例如,人口按性别                                     分为男、女;

顺序数据:只能归于某一有序类别的非数字型数据,属于定性数据或品质数据。它是由顺序尺度计量形成                                    的。例如将产品分成不同的等级。

数值型数据:按数字尺度测量的观测值,属于定量数据或 数量数据。数值型数据是使用自然或度量衡单位                                     对事物进行测量的结果,其结果为具体的数值。

         按照统计数据的收集方法,可以将统计数据分为观测数据和实验数据

观测数据:通过调查或观测而收集到的数据,是在没有对事物人为控制的条件下而得到的。

实验数据:在实验中控制实验对象而收集到的数据。

         按照被描述的对象与时间的关系,可以将统计数据分为截面数据和时间序列数据

截面数据:在相同或近似相同的时间点上收集的数据。描述的是现象某一时刻的变化情况

时间序列数据:在不同时间上收集到的数据。描述的是现象随时间而变化的情况

二、统计中的几个基本概念

总体:包含所研究的全部个体的集合。总体分为有限总体和无限总体,之所以这样分是为了判别子啊抽样中每次                    抽取是否独立。

个体:组成总体的每一个元素。

样本:从总体中抽取的一部分元素的集合。

样本容量:构成样本的元素的数目。

参数:用来描述总体特征的概括性数字度量。

统计量:用来描述样本特征的概括性数字度量。

变量:说明现象某种特征的概念。特点:从一次观察到下一次观察会呈现出差别或变化。

离散型变量:只能取有限个值,而且其取值都以整位数断开,可以一一列举。

连续型变量:可以在一个或多个区间中取任何值的变量。连续型变量的取值是连续不断的,不能一一列举。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值