- Series: 一维数组系列,也称序列 与Numpy中的一维array类似,二者与Python基本的数据结构list也很相似
- DataFrame: 二维的表格型数据结构,可以将DataFrame理解为Series的容器,以下的内容主要以DataFrame为主
- Panel: 三维数组,可以理解为DataFrame的容器
#装载数据集
#country(国家) continet(洲) year(年份) lifeExp(预期寿命) pop(人口) gdpPercap(人均GDP)
import pandas
import csv
#列用什么分割 --sep
df = pandas.read_csv('./gapminder.tsv',sep='\t')
print(type(df))
print(df.head())
print(df.head(10))
print(type(df.head()))
#它是属性 获取二维表维度 1704行 6列
print(df.shape) #(1704, 6)
print(df.shape[1]) #返回的是元祖
#获取列名
print(df.columns)
for column in df.columns:
print(column)
#country
#continent
#每列的类型
print(df.dtypes)
#country object
#continent object
for type in df.dtypes:
print(type)
#float64
#int64
#列名和列的类型作为元祖放进去
for a in zip(df.columns,df.dtypes):
print(a)
#('country', dtype('O'))
#('continent', dtype('O'))
#('year', dtype('int64'))
print('-----------------')
#转成字典
columnTypes = dict(zip(df.columns,df.dtypes))
print(columnTypes)
print(columnTypes.get('country'))
print(columnTypes.get('lifeExp'))
#{'continent': dtype('O'), 'lifeExp': dtype('float64'), 'year': dtype('int64'), 'pop': dtype('int64'), 'country': dtype('O'), 'gdpPercap': dtype('float64')}
#object
#float64
print(df.info())
'''
object string
int64 int
float64 float
datetime64 date
'''