Python Pandas 数据集基础操作

本文深入探讨了Pandas库中的核心数据结构:Series、DataFrame和Panel。通过实例讲解了如何使用Pandas读取并操作数据,包括数据的装载、查看数据类型、列名和基本信息。适合初学者和有一定基础的开发者进一步掌握Pandas的使用技巧。
摘要由CSDN通过智能技术生成
  1. Series: 一维数组系列,也称序列 与Numpy中的一维array类似,二者与Python基本的数据结构list也很相似
  2. DataFrame: 二维的表格型数据结构,可以将DataFrame理解为Series的容器,以下的内容主要以DataFrame为主
  3. Panel: 三维数组,可以理解为DataFrame的容器
#装载数据集
#country(国家)  continet(洲) year(年份)  lifeExp(预期寿命)  pop(人口) gdpPercap(人均GDP)

import pandas
import csv

#列用什么分割  --sep
df = pandas.read_csv('./gapminder.tsv',sep='\t')
print(type(df))
print(df.head())
print(df.head(10))
print(type(df.head()))

#它是属性  获取二维表维度  1704行 6列
print(df.shape)  #(1704, 6)
print(df.shape[1])  #返回的是元祖

#获取列名
print(df.columns)
for column in df.columns:
    print(column)
#country
#continent


#每列的类型
print(df.dtypes)
#country       object
#continent     object

for type in df.dtypes:
    print(type)
    #float64
    #int64


#列名和列的类型作为元祖放进去
for a in zip(df.columns,df.dtypes):
    print(a)
#('country', dtype('O'))
#('continent', dtype('O'))
#('year', dtype('int64'))

print('-----------------')
#转成字典
columnTypes = dict(zip(df.columns,df.dtypes))
print(columnTypes)
print(columnTypes.get('country'))
print(columnTypes.get('lifeExp'))
#{'continent': dtype('O'), 'lifeExp': dtype('float64'), 'year': dtype('int64'), 'pop': dtype('int64'), 'country': dtype('O'), 'gdpPercap': dtype('float64')}
#object
#float64

print(df.info())

'''
object    string
int64     int
float64    float
datetime64  date 
'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟伟哦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值