测量学—误差理论与测量平差基础

绪论

观测误差

测量平差学科的研究对象

测量平差的简史和发展

本课程的任务和内容

误差分布与精度指标

正态分布

  1. 一维正态分布

    服从正态分布的一维随机变量 X 的概率密度为

    f(x)=12πσe(xμ)22σ2

    记为 X~ N(μ,σ)。
    正态随机变量 X 的数学期望 E( X)=μ;
    X 的方差 D(X)=σ

  2. n维正态分布

    f(x1,x2,,xn)=1(2π)n2|DXX|12e(xμx)T(xμx)2DXX

    随机向量X的数学期望 μx 为:

    μX=μ1μ2μn=E(X1)E(X2)E(Xn)

    随机向量X的方差 DXX 为:
    DXX=σ2X1σX2X1σXnX1σX1X2σ2X2σXnX2σX1XnσX2Xnσ2Xn

偶然误差的规律性

衡量精度的指标

  1. 方差和中误差
  2. 平均误差
  3. 或然误差
  4. 极限误差
  5. 相对误差

精度、 准确度与精确度

精度

  1. 协方差的定义和概念
    设有观测值X和Y,则X关于Y的协方差定义为:
    σXY=E[(XE(X))(YE(Y))]

    Δxi 是观测值 xi 的真误差, Δyi 是观测值 yi 的真误差,协方差 σxy 是这两种真误差所有可能取值的乘积的理论平均值,

σxy=limn+ni=1(ΔxiΔyi)n=limn+1n(Δx1Δy1+Δx2Δy2++ΔxiΔyi)

2. 观测向量的精度指标-协方差阵
设有观测向量 X=[x1x2xn]T ,其协方差阵为:
DXX=σ2x1σx2x1σxnx1σx1x2σ2x2σxnx2σx1xnσx2xnσ2xn=E[(XE(X))(XE(X))T]

3. 互协方差阵
如果有两组观测向量X和Y,他们的数学期望分别为E(X)和E(Y)。若记
Zn+r  1=XY

则方差Z的方程阵 DZZ
DZZn+r  n+r=DXXn  nDYXr  nDXYn  rDYYr  r

其中 DXX DYY 分别为X和Y的协方差阵,称 DXY 为观测值向量 X 关于 Y 的互协方差阵:
DXY=σx1y1σx2y1σxny1σx1y2σx2y2σxny2σx1yrσx2yrσxnyr=E[(Xμx)(YμY)T]=DTYX

准确度

精确度

精确度是精度和准确度的合成,是指观测结果与其真值的接近程度, 包括观测结果与其数学期望接近程度和数学期望与其真值的偏差。 精确度的衡量指标为均方误差:

MSE(X)=E(XX¯)

测量不确定度

协方差传播律及权

数学期望的传播

协方差传播律

观测值线性函数的方差

设有观测值 Xn  1 ,其数学期望为 μXn  1 ,协方差阵为 DXXn  n ,即

X=X1μ2μnμX=μ1μ2μn=E(X1)E(X2)E(Xn)=E(X

DXX=E[(XμX)(XμX)T]=σ21σ21σn1σ12σ22σn2σ1nσ2nσ2n(3-2-2)

其中 σi Xi 的方差 , σij Xi Xj 的协方差 , 又设有 X 的线性函数为
Zt  1=K1  nXn  1+k01  1

式中:
K1  n=[k1,k2,,kn]

公式(3-2-2)的纯量形式为
Z=k1X1+k2X2++knXn+k0

则:
Z 的数学期望:
E(Z)=KμX+k0

Z 的方差:
DZZ1  1=σ2Z=KDXXKT(3-2-4)

将(3-2-4)写成纯量形式:
DZZ1  1==σ2Z=k21σ21+k22σ22++k2nσ2n+2k1k2σ12+2k1k3σ13++2k1knσ1n++2kn1knσn1,n

即协方差传播率
### 多个观测值线性函数的协方差阵
若令
Zt  1=Z1Z2ZtKtn=k11k21kt1k12k22kt2k1nk2nktnK0t  1=k10k20kt0

Zt  1=Kt  nXn  1+K0t  1

纯量展开式为:
Z1=k11X1+k12X2++k1nXn+k10Z2=k22X2+k22X2++k2nXn+k20 Zt=kttXt+kt2X2++ktnXn+kt0

Z 的数学期望为
E(Z)=KμX+K0

Z 的协方差阵
DZZt  t=Kt  nDXXn  nKTn  t

### 非线性函数的协方差阵
设有 Xn  1 的非线性函数:
Z=f(X)  ( Z=f(X1,X2,,Xn  ))

则Z的方程 DZZ 为:
DZZ=KDXXKT

其中:
K=[k1 k2  kn]=[(fX1)0(fX2)0(fXn)0]

t个非线性函数的协方差阵

若有t个非线性函数

Z1=Z2= Zt=f1(X1,X2,,Xn)f2(X1,X2,,Xn)ft(X1,X2,,Xn)

Zt  1 的协方差阵
DZZ=KDXXKT

其中:
Kt  n=(f1X1)0(f2X1)0(ftX1)0(f1X2)0(f2X2)0(ftX2)0(f1Xn)0(f2Xn)0(ftXn)0

协方差传播律的应用

权与定权的常用方法

协因数和协因数传播律

协因数与协因数阵

观测值的权与它的方差成反比, 设有观测值L_{i}和L_{j},它们的方差分别为 σi σj ,它们之间的协方差为 σij ,令

Qii=1pi=σ2iσ20

Qjj=1pj=σ2jσ20

Qij=σijσ20

Qii Qjj 分别称为 Li Lj 的协因数或权倒数,称 Qij Li 关于 Lj 的协因数或相关权倒数。
假定有观测值向量(或者观测值向量函数) Xn  1 Yr  1 ,他们的方差阵分别为 DXX DYY ,X关于Y的互互协方差阵为 DXY ,令

QXXn n=1σ20DXX

QYYr r=1σ20DYY

QXYn r=1σ20DXY

则称 QXX QYY 分别为X和Y的协因数阵, QXY 为X关于Y的互协因数阵(相关权逆阵)。

协因数传播律

设有观测值 X, 已知它的协因数阵为 QXX , 又设有 X 的函数 Y 和 Z:

Y=FX+F0

Z=KX+K0

按协方差传播律导出协因数阵为:
QYY=FQXXFT

QZZ=KQXXKT

QYZ=FQXXKT

这就是观测值的协因数阵与其线性函数的协因数阵的关系式,通常称之为协因数传播律,或称之为权逆阵传播律。
由真误差计算中误差及其实际应用

系统误差的传播

前几节所讨论的问题,是以观测值只含有偶然误差为前提的.
本节讨论观测值中同时含有系统误差时,观测值综合误差的方差(简称综合方差) 估计及系统误差的传播规律。

观测值的系统误差与综合方差

设有观测值 L,观测量的真值为 Ln 1˜ ,则L的综合误差可以定义为:

Ω=L˜L

如果综合误差 Ω中只包含有偶然误差Δ, 由偶然误差的特性可知其数学期望应为 E(Ω)= E(Δ) = 0, 如果 Ω中除包含偶然误差Δ外, 还包含有系统误差 ε,即
Ω=Δ+ϵ=L˜L

此时,由于系统误差 ε不是随机变量, 所以 Ω的数学期望为
E(Ω)=E(Δ)+ϵ=ϵ0

又因为
ϵ=E(Ω)=EL˜L=L˜E(L)

- ε也就是观测值上的数学期望对于观测量真值的偏差值,
- L 包含的系统误差愈小(ε愈小),则 L 的数学期望对于真值的偏差值愈小
当观测值 L 中既存在偶然误差Δ,又存在系统误差时, 其观测值的综合方差 DLL 是用均方误差表示的
DLL=MSE(L)=E(LL˜)=E(Ω2)=σ2+ε2

观测值的综合方差等于它的方差 σ2 与系统误差的平方 ε2 之和

系统误差的传播

  1. 线性函数
    设已知观测值 Li ( i = 1,2, ⋯, n) 的系统误差为

    ϵi=E(Ωi)=Li˜E(Li)    (i=1,2,,n)

    其中, Li˜ Ωi Li 所对应的观测量的真值和综合误差.
    设有线性函数
    Z=k1L1+k2L2++knLn+k0

    Z的综合误差 ΩZ 与各个 Li 的综合误差 Ωi 之间的关系式为
    ΩZ=k1Ω1+k2Ω2++knΩn

    线性函数的系统误差的传播公式:
    εZ=E(ΩZ)=p=i=1nkiεi

  2. 非线性函数
    函数 Z 是非线性形式:

    Z=f(L1,L2,,Ln)

    可以用它们的微分关系代替它们的误差之间的关系,即有
    ΩZ=ZL1Ω1+ZL2Ω2++ZLnΩn

系统误差与偶然误差联合传播

  1. 系统误差为常熟、常系差的情况
    对于线性函数

    Z=k1L1+k2L2++knLn

    与综合误差之间的关系为
    ΩZ=k1Ω1+k2Ω1++knΩn

    Z 的综合方差为:
    DZZ=i=1nk2iσ2i+i=1nk2iε2i

  2. 随机系统误差情况
    设观测值 L的综合误差是

    Ω=Δ+ϵ

    ϵ 为随机性系统误差,一般与Δ相互独立,若已知Δ的偶然方差为 σ2 , ϵ 的系统方差为 σ2ϵ , 则可按协方差传播律,得
    σ2L=σ2Ω=σ2+σ2ϵ

    有观测值线性函数
    Z=k1L1+k2L2++knLn

    与综合误差之间的关系为
    ΩZ=k1Ω1+k2Ω1++knΩn

    Z 的综合方差为:
    DZZ=i=1nk2iσ2i+DZZ=i=1nk2iσ2ϵi

平差数学模型与最小二乘原理

测量平差概述

函数模型

条件平差–条件方程

简接平差–误差方程

附有参数的条件平差

附有限制条件的间接平差

函数模型的线性化

测量平差的数学模型

参数估计与最小二乘原理

函数模型 (一般)函数模型 (线性)数学模型
条件平差 F(L˜)=0 Ar  nL˜n  1+A0r  1=0r  1AΔ+W=0
简接平差 L˜n  1=F(X˜) L˜n  1=Bn  tX˜t  1+dn  1l+Δ=BX
附有参数的条件平差 Ft  1(L˜  X˜)=0 At  nL˜n  1+Bt  uX˜u  1+A0t  1=0AΔ+BX˜+W=0
附有限制条件的间接平差 L˜u  1=F(X˜u  1)Φs  1(X˜)=0 L˜n  1=Bn  uX˜u  1+dn  1l+Δ=BX˜Cs  uX˜u  1+Wxs  1=0s  1

条件平差

条件平差原理

条件方程

精度评定

条件平差公式汇编和水准网平差示例

附有参数的条件平差

附有参数的条件平差原理

精度评定

公式汇编和示例

间接平差

间接平差原理

误差方程

精度评定

间接平差公式汇编和水准网平差示例

间接平差特例— — —直接平差

三角网坐标平差

测边网坐标平差

导线网间接平差

GPS 网平差

附有限制条件的间接平差

附有限制条件的间接平差原理

精度评定

公式汇编和示例

概括平差函数模型

基本平差方法的概括函数模型

附有限制条件的条件平差原理

精度评定

各种平差方法的共性与特性

平差结果的统计性质

误差椭圆

概述

点位误差

误差曲线

误差椭圆

相对误差椭圆

点位落入误差椭圆内的概率

平差系统的统计假设检验

统计假设检验概述

统计假设检验的基本方法

误差分布的假设检验

平差模型正确性的统计检验

平差参数的统计检验和区间估计

粗差检验的数据探测法

近代平差概论

序贯平差

附加系统参数的平差

秩亏自由网平差

最小二乘配置原理

  • 11
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
误差理论测量平差基础测量学中的重要概念。测量中难免会产生误差,包括系统误差和随机误差误差理论就是通过对误差的分析和研究,来确定测量结果的可靠性和准确性的一门学科。 测量平差基础是对测量结果进行调整的过程,通过对各个测量值的分析和比较,将误差调整到最小程度,从而得到更为准确的测量结果。平差可以分为精度平差和权衡平差两种方式。其中精度平差是对各个测量点进行平差,追求测量结果的最小误差;权衡平差是在考虑各个测量点的精度和测量结果的一致性之间进行权衡,以得到相对合理的结果。 误差理论测量平差基础测量学的基本理论和方法。测量学是一门研究测量误差及其影响因素、测量方法和测量结果处理的科学,广泛应用于工程测量、地理测量、物理测量等领域。通过误差理论测量平差基础的学习和掌握,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。 此外,在现代科技发展的背景下,误差理论测量平差基础也得到了很大的推动和应用。在大数据、人工智能等领域中,对测量结果的精确性要求越来越高,因此对误差理论测量平差基础的研究和应用也变得更加重要。 总之,误差理论测量平差基础测量学中的基本概念和方法,通过对测量误差的分析和测量结果的调整,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值