转变为一维向量的flatten()操作

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012193416/article/details/79270136

flatten()就是我们常说的整平操作,在神经网络中应用很多,在numpy中应用的对象就是np的数组对象,在不同的深度学习框架中都会开发该方法,一般在经过卷积神经网络等特征提取之后都会经过一到两个fc层,对于相对比较传统的神经网络而言,亦或者是进入分类器,大多数是需要转化成为一维向量的,传统的全连接层的输入对象只能是一维的,这个时候就需要用到这个flatten()整平操作,也很简单,大多数是直接应用于特征提取之后的矩阵。

举个在numpy中例子:


应用很直观,a是一个np的二位数组,2行2列,经过flatten操作之后变成一个一维向量。

没有更多推荐了,返回首页