增加网络深度和宽度的同时减少参数。
Inception V1
增加了网络的宽度,增加了网络对尺度的适应性,不同的支路的感受野是不同的,所以有多尺度的信息在里面。
第二张图引入了1x1卷积主要是为减少了减参。
Inception V2:
加入了BN层,使每一层都规范化到一个N(0,1)的高斯,另一方面学习VGG使用2个3x3cobv代替inception模块中的5x5,降参,加速计算。
Inception V3:
分解,将 7x7分解成1x7和7x1,加速计算,加深网络,增加网络非线性。
Inception V4:
Inception和Resnet的结合