tensorflow(二)学习记录

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012235274/article/details/52583931

这个网络的结果是:
input–>conv1–>relu–>maxpooling–>dropout–>conv2–>reul–>maxpooling –>dropout–>reshape–>innerproduct–>relu–>dropout–>innerproduct–>softmax_cross_entropy_with_logits
pooling 和 convolution的stride是针对每一个维度的stride。
convolution的kernel是h×w×c×n

# -*- coding: utf-8 -*-
"""
Created on Mon Sep 19 09:44:16 2016

@author: yang
"""
import tensorflow as tf
import sys
sys.path.append('/home/yang/tensorflow/tensorflow/examples/tutorials/mnist')
import input_data

mnist = input_data.read_data_sets("/home/yang/data", one_hot=True)

learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

n_input = 784 #mnist输入图片的维度
n_class = 10 #类别数
dropout = 0.75 #dropout的系数

x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_class])
keep_prob = tf.placeholder(tf.float32)

def conv2d(img, w, b):
    return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME'),b))
def max_pool(img, k):
    return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
#构建网络
def conv_net (_X, _weights, _biases, _dropout):
    _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
    conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
    conv1 = max_pool(conv1, k=2)
    conv1 = tf.nn.dropout(conv1, _dropout)
    conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
    conv2 = max_pool(conv2, k=2)
    conv2 = tf.nn.dropout(conv2, _dropout)
    dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]])
    dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1']))
    dense1 = tf.nn.dropout(dense1, _dropout)
    out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out'])
    return out
weights = {
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    'out': tf.Variable(tf.random_normal([1024, n_class]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_class]))
}

pred = conv_net(x, weights, biases, keep_prob)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

init = tf.initialize_all_variables()
tf.device("/gpu:0")
with tf.Session() as sess:
    sess.run(init)
    step = 1
    while step*batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
        if step % display_step == 0:
            batch_xs, batch_ys = mnist.test.next_batch(batch_size)
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
        step+=1

运行结果
这里写图片描述
tensorflow语法补充学习:

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

Performs the max pooling on the input.

Args:
  • value: A 4-D Tensor with shape [batch, height, width, channels] and
    type tf.float32.
  • ksize: A list of ints that has length >= 4. The size of the window for
    each dimension of the input tensor.
  • strides: A list of ints that has length >= 4. The stride of the sliding
    window for each dimension of the input tensor.
  • padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
    See the comment here
  • data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.
  • name: Optional name for the operation.
Returns:

A Tensor with type tf.float32. The max pooled output tensor.
### tf.reshape(tensor, shape, name=None) {#reshape}

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same values
as tensor with shape shape.

If one component of shape is the special value -1, the size of that dimension
is computed so that the total size remains constant. In particular, a shape
of [-1] flattens into 1-D. At most one component of shape can be -1.

If shape is 1-D or higher, then the operation returns a tensor with shape
shape filled with the values of tensor. In this case, the number of elements
implied by shape must be the same as the number of elements in tensor.

For example:

# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
                        [4, 5, 6],
                        [7, 8, 9]]

# tensor 't' is [[[1, 1], [2, 2]],
#                [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
                        [3, 3, 4, 4]]

# tensor 't' is [[[1, 1, 1],
#                 [2, 2, 2]],
#                [[3, 3, 3],
#                 [4, 4, 4]],
#                [[5, 5, 5],
#                 [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

# -1 can also be used to infer the shape

# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
                         [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
                         [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
                              [2, 2, 2],
                              [3, 3, 3]],
                             [[4, 4, 4],
                              [5, 5, 5],
                              [6, 6, 6]]]

# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7
Args:
  • tensor: A Tensor.
  • shape: A Tensor. Must be one of the following types: int32, int64.
    Defines the shape of the output tensor.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as tensor.

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页