deep learning
文章平均质量分 50
breeze_csdn
这个作者很懒,什么都没留下…
展开
-
YOLOv1-v10各版本的作者(附论文及项目地址)
Chien-Yao Wang(YOLOv4、YOLOv7、YOLOv9 作者)、Hong-Yuan Mark Liao(YOLOv4、YOLOv7、YOLOv9 的作者)、 Alexey Bochkovskiy (YOLOv4 作者)。Chien-Yao Wang (YOLOv4、YOLOv7、YOLOv9 作者) , I-Hau Yeh , Hong-Yuan Mark Liao(YOLOv4、YOLOv7、YOLOv9 的作者)主要工作:YOLOv10,IMRAM,RepViT,GRN,PDANet。转载 2024-09-11 15:55:57 · 150 阅读 · 0 评论 -
imgaug 图像增强方法
imgaug 是一个比torchvision更强大的数据增强工具包,这不仅体现在数据增强类别上,也包括数据增强方法的使用。比如,imgaug不仅提供了一些常见的shape增强方法和color增强方法,例如旋转、对比度等,也提供了加雨、加雾这些增强方法。此外,imgaug也可以设置keypoint等,对比数据增强前后关键点未知的变化。转载 2023-09-11 10:33:05 · 400 阅读 · 1 评论 -
【YOLOv7绘制labels.jpg和labels_correlogram.jpg】只用更改一处代码+附带这两个图的解释
数据每个类别数量直方图(左上角)、把所有框的x和y中心值设置在相同位置看每个训练集数据每个标签框的长宽情况(右上角)、绘制 x, y 变量直方图来显示数据集的分布(左下角)、绘制 width, height 变量直方图来显示数据集的分布(右下角)。: 汇总训练集数据的标签labels,并画出训练集数据标签 x, y, width, height 4个变量之间的关系图(或非线性,有无较为明显的相关关系)转载 2023-09-06 10:52:22 · 618 阅读 · 0 评论 -
YOLOV7: indices should be either on cpu or on the same device as the indexed tensor (cpu)
【代码】YOLOV7: indices should be either on cpu or on the same device as the indexed tensor (cpu)转载 2023-02-12 07:33:32 · 649 阅读 · 0 评论 -
paddledetection使用solov2进行实例分割操作记录
1.准备数据首先需要将数据集转换为标准COCO格式或VOC格式。2.选择模型PaddleDetection中提供了丰富的模型库,具体可在模型库中查看各个模型的指标,您可依据实际部署算力的情况,选择合适的模型,同时也可以根据使用场景不同选择合适的模型,具体参考特色模型。3.生成Anchor在yolo系列模型中,可以运行1目前支持的主要参数配置如下表所示:4.修改参数配置数据路径配置: 在yaml配置文件中,依据1.数据准备中准备好的路径,配置EvalReader和TestReader的路径。转载 2023-02-03 17:07:18 · 635 阅读 · 0 评论 -
PaddleDetection使用教程
1.准备数据首先需要将数据集转换为标准COCO格式或VOC格式。2.选择模型PaddleDetection中提供了丰富的模型库,具体可在模型库中查看各个模型的指标,您可依据实际部署算力的情况,选择合适的模型,同时也可以根据使用场景不同选择合适的模型,具体参考特色模型。3.生成Anchor在yolo系列模型中,可以运行1目前支持的主要参数配置如下表所示:4.修改参数配置数据路径配置: 在yaml配置文件中,依据1.数据准备中准备好的路径,配置EvalReader和TestReader的路径。转载 2023-02-03 17:04:35 · 2012 阅读 · 0 评论 -
Paddle记录
运行版本的solov2至此,基于的SOLOv2从训练部署的过程已形成闭环,可以进行下一步的优化及功能修改了。转载 2023-02-03 16:34:07 · 345 阅读 · 0 评论 -
利用labelme制作自己的coco数据集(labelme转coco数据集)
格式的数据集,由于本人深度学习刚刚学习不到一年,水平有限,在labelme生成的json文件转换到coco文件卡了很久,网上看一些博客也是各种报错,可能自己的电脑问题吧。下面说一下我自己遇到的坑,以作记录。和save with Image data(否则会报错,转换时需要)建议之间安装在conda(base)环境下,方便启用。在对应图片后面生成对应的labelme的label。回到labelme,选择对应图片的文件夹。#推荐使用镜像源,我自己比较喜欢豆瓣源。运行labelme2coco.py。转载 2023-02-03 16:31:16 · 2055 阅读 · 1 评论 -
实例分割&语义分割:A mini-survey
权重为相应的两个位置之间的特征相似性。具体来说,对于每一个像素,使用一个新型的十字交叉注意力模块捕获该像素的十字交叉路径上的其他像素的上下文信息,通过递归使用这个十字交叉注意力模块(两次就能捕获全局),每个像素就可以捕获全局的依赖。**其想法来自于光流(Optical Flow),这是用于分析连续图像或者视频帧的动作,作者将不同层的特征看作是不同的视频帧,由于它们之间没有很好的对齐,所以看作是不同层发生的移动,通过光流的方式来得到这种移动,进而能够对未对齐的特征进行一定的修复使得它们能够对齐。转载 2023-02-02 22:59:55 · 520 阅读 · 0 评论 -
YOLOV7开源代码讲解--训练参数解释
数据集路径,默认为coco.yaml,主要定义数据集路径,以txt文件保存【训练集、验证集和测试集】,类的数量【默认nc=80】,类名【names】。训练中模型的参数定义,采用yaml文件【注意是training下的yaml,不是deploy下的】,可以用于模型的选择。设置为True,超参数优化,可以选择自己的更有的超参数(但资源消耗也很厉害),一般情况下用不到。设备选择,如果是GPU就输入GPU索引【如0,1,2..】,CPU训练就填cpu。默认为False,如果想要开启该功能,需要指定模型路径。转载 2023-02-02 11:15:01 · 2952 阅读 · 2 评论 -
python深度学习机器学习必备的学习网站集合!
给大家分享一下 最近做深度学习计算机视觉自然语言处理所需要的必备网站。非常的实用。有各种各样的项目。适合新手学习 进行资源数据代码探索!转载 2023-01-13 10:15:31 · 983 阅读 · 0 评论 -
NVIDIA CUDA和cuDNN显卡历代版本下载地址
下载exe,例如526.98-desktop-win10-win11-64bit-international-dch-whql.exe。下载zip,例如cudnn-windows-x86_64-8.7.0.84_cuda11-archive.zip。1、电脑-NVIDIA控制面板-帮助-系统信息-组件,可以查看显卡支持的CUDA版本。下载exe,例如cuda_11.8.0_522.06_windows.exe。先安装N卡的显卡驱动--->再安装cuda-->最后安装cuDNN。计算能力要求3.0以上。转载 2023-01-06 17:26:25 · 4124 阅读 · 0 评论 -
yolov7模型训练结果分析以及如何评估yolov7模型训练的效果
最近是刚刚训练模型,但是只会一股脑的训练是不行的,要懂得训练多少epoch,以及通过哪些指标来查看训练的效果如何,现在这几天的经验总结一下。本实验以person为例子,分别训练100epoch、60epoch、50epoch训练经验:由于并不知道到底训练多少epoch效果比较好,所以现在先设置成100。(这几天查询资料得出来的结论一般50多就差不多了)转载 2022-12-26 13:43:23 · 7780 阅读 · 6 评论 -
Yolov7训练自己的数据集(超详细教程)
查了下原因是python和win10系统,打开文件时默认的编码方式冲突导致:python默认的是gbk,而win10默认的是utf-8,所以只要改一下python打开文件时,默认的编码就行。(PS:开始公主用的官网默认的 --batch-size 32,然后GPU out of memory了,改成16,还是out of memory,最后含泪改成8.截上图的时候还没到out of memory那一步,因此--batch-size还是32)哎呦,标的很准,可是,由于标签是中文,显示乱码“?转载 2022-12-22 16:02:44 · 2641 阅读 · 2 评论 -
yaml.scanner.ScannerError: while scanning for the next token found character ‘\t‘
语法要求严格,不允许使用Tab键,改成空格就行了。原创 2022-10-07 00:32:38 · 1640 阅读 · 0 评论 -
LabelImg,LabelMe工具标注后的图片数据增强
这是一个目标检测和目标分割增强的小工具,需要您事先标记一些图片,然后变化增强图片(支持LabelIMg和LabelMe标注的文件),图片数据增强,包括模糊,亮度,裁剪,旋转,平移,镜像。 1 目标检测图片数据增强(使用labelImg工具) 我们使用labelImg工具进行标注,会得到对应的xml文件,结果如下: 现在我们要实现一些图片增强,比如模糊,亮度,裁剪,旋转,...转载 2021-09-18 10:23:42 · 6135 阅读 · 20 评论 -
目标检测(Object Detection)
文章目录 目标检测(Object Detection)一、基本概念1. 什么是目标检测2. 目标检测的核心问题3. 目标检测算法分类1)Tow Stage2)One Stage 4. 目标检测应用1)人脸检测2)行人检测3)车辆检测4)遥感检测 ...转载 2021-06-24 18:51:37 · 1916 阅读 · 0 评论 -
Win10使用VS2019从源码编译OpenCV 4.4 + CUDA 11.0 + Cudnn 8.0 + python3
本文主要介绍Win10使用VS2019从源码编译OpenCV 4.4,并使用opencv_contrib支持CUDA 11.0 + Cudnn 8.0,以及对python3的支持。1 首先准备安装环境Microsoft Visual Studio 2019可以用社区版,免费的。CUDA 11.0下载地址:https://developer.nvidia.com/cuda-downloads安装顺序建议先安装VS2019再安装CUDA。CUDNN 8.0下载地址:https://d转载 2021-03-14 23:44:06 · 1116 阅读 · 1 评论 -
I3D Finetune
背景介绍在现有的的行为分类数据集(UCF-101 and HMDB-51)中,视频数据的缺乏使得确定一个好的视频结构很困难,大部分方法在小规模数据集上取得差不多的效果。这...转载 2020-06-22 15:20:10 · 591 阅读 · 0 评论 -
win10 + cuda9.0 + TensorFlow-gpu
写在前面:检查GPU是否支持CUDA先确定下自己的显卡型号(不要告诉我你不知道怎么查看自己的显卡型号)。可以从下面的网址查看自己的显卡是否在支持之列。如果你的显卡比较新,到这里检查是否支持CUDA:https://developer.nvidia.com/cuda-gpus如果你的显卡很老,请到如下链接检查是否支持CUDA:https://developer.nvidia.com/...转载 2019-09-03 14:39:20 · 1107 阅读 · 0 评论 -
window10安装TensorFlow2、CUDA10、cuDNN7.6.5
https://blog.csdn.net/zimiao552147572/article/details/104084170日萌社人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)安装TensorFlow2、CUDA10、cuDNN7.6.5Anaconda3 python 3.7、TensorFlow2、...转载 2020-04-09 10:38:41 · 454 阅读 · 0 评论 -
Ubuntu18.04 安装 CUDA10.0 + cuDNN7.6.5 + TensorFlow2.0
第一次安装 CUDA 的过程简直抓狂,中间出现了很多次莫名其妙的 bug,踩了很多坑。比如装好了 CUDA 重启后进不去桌面系统了,直接黑屏、比如鼠标键盘都不 work 了、再比如装好了却安装不了 TensorFlow-GPU......看了一圈网上的安装教程,发现还是官方指南真香了~新年第一篇,分享一下我的...转载 2020-04-09 14:57:13 · 3601 阅读 · 1 评论 -
视频行为检测&分类方案整理
主流几类方案imageTwo-stream[2014] Large-scale Video Classification with Convolutional Neural NetworksFusion Method实验了不同的卷积神经网络表示出视频的时间信息imageMulti-resolution CNNimage使用两种不同的分辨率...转载 2020-04-01 16:04:03 · 1172 阅读 · 0 评论 -
YOLOv2 / YOLO9000 深入理解
YOLOv2相对v1版本,在继续保持处理速度的基础上,从预测更准确(Better),速度更快(Faster),识别对象更多(Stronger)这三个方面进行了改进。其中识别更多对象也就是扩展到能够检测9000种不同对象,称之为YOLO9000。本文讨论YOLOv2的内容,关于YOLO v1和v3的内容,请参考 YOLO v1深入理解 和 YOLO v3深入理解。下面具体看下YOLO2都做了哪些改进...转载 2020-01-19 09:15:54 · 521 阅读 · 0 评论 -
YOLOv3 深入理解
YOLOv3没有太多的创新,主要是借鉴一些好的方案融合到YOLO里面。不过效果还是不错的,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。本文主要讲v3的改进,由于是以v1和v2为基础,关于YOLO1和YOLO2的部分析请移步YOLO v1深入理解 和 YOLOv2 / YOLO9000 深入理解。YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象...转载 2020-01-17 09:59:24 · 470 阅读 · 0 评论 -
YOLO v1深入理解
YOLO(You Only Look Once)是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。现在YOLO已经发展到v3版本,不过新版本也是在原有版本基础上不断改进演化的,所以本文先分析YOLO v1版本。关于 YOLOv2/YOLO9000 的分析理解请移步 YOLO v2 / YOLO 9000。对象识别和定位输入一张图片,要求输出其中所包含...转载 2019-11-21 15:04:36 · 385 阅读 · 0 评论