【YOLOv7绘制labels.jpg和labels_correlogram.jpg】只用更改一处代码+附带这两个图的解释

本文介绍了如何在YOLOv7中更改效果图的绘制方法,包括在train.py中的plot_labels位置操作。同时,详细分析了labels.jpg和labels_correlogram.jpg中的训练集数据,涉及类别数量、框坐标分布以及标签变量间的相关性图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果图

在这里插入图片描述

更改方式

  • 原始YOLOv7是关掉这个绘制代码的,打开即可

train.py中按住快捷键Ctrl+F搜索plot_labels定位如图位置

在这里插入图片描述

解释

labels.jpg : 统计训练集数据每个类别数量直方图(左上角)、把所有框的x和y中心值设置在相同位置看每个训练集数据每个标签框的长宽情况(右上角)、绘制 x, y 变量直方图来显示数据集的分布(左下角)、绘制 width, height 变量直方图来显示数据集的分布(右下角)。

labels_correlogram.jpg : 汇总训练集数据的标签labels,并画出训练集数据标签 x, y, width, height 4个变量之间的关系图(线性或非线性,有无较为明显的相关关系)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值